skip to main content


Title: Oak Transpiration Drawn From the Weathered Bedrock Vadose Zone in the Summer Dry Season
Abstract

The spatiotemporal dynamics of plant water sources are hidden and poorly understood. We document water source use ofQuercus garryanagrowing in Northern California on a profile of approximately 50 cm of soil underlain by 2–4 m of weathered bedrock (sheared shale mélange) that completely saturates in winter, when the oaks lack leaves, and progressively dries over the summer. We determined oak water sources by combining observations of water stable isotope composition, vadose zone moisture and groundwater dynamics, and metrics of tree water status (potential) and use (sapflow). During the spring, oak xylem water is isotopically similar to the seasonal groundwater and shallow, evaporatively enriched soil moisture pools. However, as soils dry and the water table recedes to the permanently saturated, anoxic, low‐conductivity fresh bedrock boundary,Q. garryanashifts to using a water source with a depleted isotopic composition that matches residual moisture in the deep soil and underlying weathered bedrock vadose zone. Sapflow rates remain high as late‐summer predawn water potentials drop below2.5 MPa. Neutron probe surveys reveal late‐summer rock moisture declines under the oaks in contrast to constant rock moisture levels under grass‐dominated areas. We therefore conclude that the oaks temporarily use seasonal groundwater when it occupies the weathered profile but otherwise use deep unsaturated zone moisture after seasonal groundwater recedes. The ample moisture, connected porosity, and oxygenated conditions of the weathered bedrock vadose zone make it a key tree water resource during the long summer dry season of the local Mediterranean climate.

 
more » « less
Award ID(s):
1331940
NSF-PAR ID:
10452162
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
56
Issue:
11
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bedrock vadose zone water storage (i.e., rock moisture) dynamics are rarely observed but potentially key to understanding drought responses. Exploiting a borehole network at a Mediterranean blue oak savanna site—Rancho Venada—we document how water storage capacity in deeply weathered bedrock profiles regulates woody plant water availability and groundwater recharge. The site is in the Northern California Coast Range within steeply dipping turbidites. In a wet year (water year 2019; 647 mm of precipitation), rock moisture was quickly replenished to a characteristic storage capacity, recharging groundwater that emerged at springs to generate streamflow. In the subsequent rainless summer growing season, rock moisture was depleted by about 93 mm. In two drought years that followed (212 and 121 mm of precipitation) the total amount of rock moisture gained each winter was about 54 and 20 mm, respectively, and declines were documented exceeding these amounts, resulting in progressively lower rock moisture content. Oaks, which are rooted into bedrock, demonstrated signs of water stress in drought, including reduced transpiration rates and extremely low water potentials. In the 2020–2021 drought, precipitation did not exceed storage capacity, resulting in variable belowground water storage, increased plant water stress, and no recharge or runoff. Rock moisture deficits (rather than soil moisture deficits) explain these responses.

     
    more » « less
  2. Abstract

    Warming across the western United States continues to reduce snowpack, lengthen growing seasons, and increase atmospheric demand, leading to uncertainty about moisture availability in montane forests. As many upland forests have thin soils and extensive rooting into weathered bedrock, deep vadose‐zone water may be a critical late‐season water source for vegetation and mitigate forest water stress. A key impediment to understanding the role of the deep vadose zone as a reservoir is quantifying the plant‐available water held there. We quantify the spatiotemporal dynamics of rock moisture held in the deep vadose zone in a montane catchment of the Rocky Mountains. Direct measurements of rock moisture were accompanied by monitoring of precipitation, transpiration, soil moisture, leaf‐water potentials, and groundwater. Using repeat nuclear magnetic resonance and neutron‐probe measurements, we found depletion of rock moisture among all our monitored plots. The magnitude of growing season depletion in rock moisture mirrored above‐ground vegetation density and transpiration, and depleted rock moisture was from ∼0.3 to 5 m below ground surface. Estimates of storage indicated weathered rock stored at least 4%–12% of mean annual precipitation. Persistent transpiration and discrepancies between estimated soil matric potentials and leaf‐water potentials suggest rock moisture may mitigate drought stress. These findings provide some of the first measurements of rock moisture use in the Rocky Mountains and indicated rock moisture use is not just confined to periods of drought or Mediterranean climates.

     
    more » « less
  3. Abstract

    Explanations for distinct adjacent ecosystems that extend across hilly landscapes typically point to differences in climate or land use. Here we document—within a similar climate—how contrasting regional plant communities correlate with distinct underlying lithology and reveal how differences in water storage capacity in the critical zone (CZ) explain this relationship. We present observations of subsurface CZ structure and groundwater dynamics from deep boreholes and quantify catchment‐wide dynamic water storage in two Franciscan rock types of the Northern California Coast Ranges. Our field sites have a Mediterranean climate, where rains are out of phase with solar energy, amplifying the importance of subsurface water storage for periods of peak ecosystem productivity in the dry season. In the deeply weathered (~30 m at ridge) Coastal Belt argillite and sandstone, ample, seasonally replenished rock moisture supports an evergreen forest and groundwater drainage sustains baseflow throughout the summer. In the Central Belt argillite‐matrix mélange, a thin CZ (~3 m at ridge) limits total dynamic water storage capacity (100–200 mm) and rapidly sheds winter rainfall via shallow storm and saturation overland flow, resulting in low plant‐available water (inferred from predawn tree water potential) and negligible groundwater storage that can drain to streams in summer. This storage limitation mechanism explains the presence of an oak savanna‐woodland bounded by seasonally ephemeral streams, despite >1,800 mm of average precipitation. Through hydrologic monitoring and subsurface characterization, we reveal a mechanism by which differences in rock type result in distinct regionally extensive plant communities under a similar climate.

     
    more » « less
  4. Abstract

    Soils are widely considered the primary terrestrial organic matter pool mediating carbon transactions with the atmosphere and groundwater. Because soils are both a host and a product of rhizosphere activity, they are thought to mark the location where photosynthetic fixation of carbon dioxide (CO2) is balanced by the oxidation of organic matter. However, in many terrestrial environments, the rhizosphere extends below soils and into fractured bedrock, and it is unknown if the resulting biological and hydrologic dynamics in bedrock have a significant impact on carbon cycling. Here we show substantial production of CO2in weathered bedrock at 4–8 m below the thin soils (<0.5 m thick) of a Northern California forest using innovative monitoring technology for sampling gases and water in fractured rock. The deep CO2production supports a persistent upward flux of CO2(g)year‐round from bedrock to soil, constituting between 2% and 29% of the average daily CO2efflux from the land surface. When water is rapidly transported across the fractured bedrock vadose zone, nearly 50% of the CO2produced in the bedrock dissolves into water, promoting water‐rock interaction and export of dissolved inorganic carbon (DIC) from the unsaturated zone to groundwater, constituting as much as 80% of the DIC exiting the hillslope. Such CO2production in weathered bedrock is subject to unique moisture, temperature, biological, and mineralogical conditions which are currently missing from terrestrial carbon models.

     
    more » « less
  5. Abstract

    Predicting rainfall‐induced landslide motion is challenging because shallow groundwater flow is extremely sensitive to the preexisting moisture content in the ground. Here, we use groundwater hydrology theory and numerical modeling combined with five years of field monitoring to illustrate how unsaturated groundwater flow processes modulate the seasonal pore water pressure rise and therefore the onset of motion for slow‐moving landslides. The onset of landslide motion at Oak Ridge earthflow in California’s Diablo Range occurs after an abrupt water table rise to near the landslide surface 52–129 days after seasonal rainfall commences. Model results and theory suggest that this abrupt rise occurs from the advection of a nearly saturated wetting front, which marks the leading edge of the integrated downward flux of seasonal rainfall, to the water table. Prior to this abrupt rise, we observe little measured pore water pressure response within the landslide due to rainfall. However, once the wetting front reaches the water table, we observe nearly instantaneous pore water pressure transmission within the landslide body that is accompanied by landslide acceleration. We cast the timescale to reach a critical pore water pressure threshold using a simple mass balance model that considers variable moisture storage with depth and explains the onset of seasonal landslide motion with a rainfall intensity‐duration threshold. Our model shows that the seasonal response time of slow‐moving landslides is controlled by the dry season vadose zone depth rather than the total landslide thickness.

     
    more » « less