skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lithologically Controlled Subsurface Critical Zone Thickness and Water Storage Capacity Determine Regional Plant Community Composition
Abstract Explanations for distinct adjacent ecosystems that extend across hilly landscapes typically point to differences in climate or land use. Here we document—within a similar climate—how contrasting regional plant communities correlate with distinct underlying lithology and reveal how differences in water storage capacity in the critical zone (CZ) explain this relationship. We present observations of subsurface CZ structure and groundwater dynamics from deep boreholes and quantify catchment‐wide dynamic water storage in two Franciscan rock types of the Northern California Coast Ranges. Our field sites have a Mediterranean climate, where rains are out of phase with solar energy, amplifying the importance of subsurface water storage for periods of peak ecosystem productivity in the dry season. In the deeply weathered (~30 m at ridge) Coastal Belt argillite and sandstone, ample, seasonally replenished rock moisture supports an evergreen forest and groundwater drainage sustains baseflow throughout the summer. In the Central Belt argillite‐matrix mélange, a thin CZ (~3 m at ridge) limits total dynamic water storage capacity (100–200 mm) and rapidly sheds winter rainfall via shallow storm and saturation overland flow, resulting in low plant‐available water (inferred from predawn tree water potential) and negligible groundwater storage that can drain to streams in summer. This storage limitation mechanism explains the presence of an oak savanna‐woodland bounded by seasonally ephemeral streams, despite >1,800 mm of average precipitation. Through hydrologic monitoring and subsurface characterization, we reveal a mechanism by which differences in rock type result in distinct regionally extensive plant communities under a similar climate.  more » « less
Award ID(s):
1331940
PAR ID:
10453577
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
55
Issue:
4
ISSN:
0043-1397
Format(s):
Medium: X Size: p. 3028-3055
Size(s):
p. 3028-3055
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Bedrock vadose zone water storage (i.e., rock moisture) dynamics are rarely observed but potentially key to understanding drought responses. Exploiting a borehole network at a Mediterranean blue oak savanna site—Rancho Venada—we document how water storage capacity in deeply weathered bedrock profiles regulates woody plant water availability and groundwater recharge. The site is in the Northern California Coast Range within steeply dipping turbidites. In a wet year (water year 2019; 647 mm of precipitation), rock moisture was quickly replenished to a characteristic storage capacity, recharging groundwater that emerged at springs to generate streamflow. In the subsequent rainless summer growing season, rock moisture was depleted by about 93 mm. In two drought years that followed (212 and 121 mm of precipitation) the total amount of rock moisture gained each winter was about 54 and 20 mm, respectively, and declines were documented exceeding these amounts, resulting in progressively lower rock moisture content. Oaks, which are rooted into bedrock, demonstrated signs of water stress in drought, including reduced transpiration rates and extremely low water potentials. In the 2020–2021 drought, precipitation did not exceed storage capacity, resulting in variable belowground water storage, increased plant water stress, and no recharge or runoff. Rock moisture deficits (rather than soil moisture deficits) explain these responses. 
    more » « less
  2. Abstract Water in rivers is delivered via the critical zone (CZ)—the living skin of the Earth, extending from the top of the vegetation canopy through the soil and down to fresh bedrock and the bottom of significantly active groundwater. Consequently, the success of stream‐rearing salmonids depends on the structure and resulting water storage and release processes of this zone. Physical processes below the land surface (the subsurface component of the CZ) ultimately determine how landscapes “filter” climate to manifest ecologically significant streamflow and temperature regimes. Subsurface water storage capacity of the CZ has emerged as a key hydrologic variable that integrates many of these subsurface processes, helping to explain flow regimes and terrestrial plant community composition. Here, we investigate how subsurface storage controls flow, temperature, and energetic regimes that matter for salmonids. We illustrate the explanatory power of broadly applicable, storage‐based frameworks across a lithological gradient that spans the Eel River watershed of California. Study sites are climatically similar but differ in their geologies and consequent subsurface CZ structure that dictates water storage dynamics, leading to dramatically different hydrographs, temperature, and riparian regimes—with consequences for every aspect of salmonid life history. Lithological controls on the development of key subsurface CZ properties like storage capacity suggest a heretofore unexplored link between salmonids and geology, adding to a rich literature that highlights various fluvial and geomorphic influences on salmonid diversity and distribution. Rapidly advancing methods for estimating and observing subsurface water storage dynamics at large scales present new opportunities for more clearly identifying landscape features that constrain the distributions and abundances of organisms, including salmonids, at watershed scales. 
    more » « less
  3. How does the physical and chemical structure of the Critical Zone (CZ), defined as the zone from treetops to the bottom of groundwater, govern its hydro-biogeochemical functioning? Multiple lines of evidence from past and newly emerging research have prompted the shallow and deep partitioning concentration-discharge (C-Q) hypothesis. The hypothesis states that in-stream C-Q relationships are shaped by distinct source waters from flow paths at different depths. Base flows are often dominated by deep groundwater and mostly reflect groundwater chemistry, whereas high flows are often dominated by shallow soil water and thus mostly reflect soil water chemistry. The contrasts between shallow soil water versus deeper groundwater chemistry shape stream solute export patterns. In this context, the vertical connectivity that regulates the shallow and deep flow partitioning is essential in determining chemical contrasts, biogeochemical reaction rates in soils and parent rocks, and ultimately solute export patterns. This talk will highlight insights gleaned from multiple lines of recent studies that include collation of water chemistry data from soils, rocks, and streams in intensively monitored watersheds, meta-analysis of stream chemistry data at the continental scale, and integrated reactive transport modeling at the hillslope and watershed scales. The hypothesis underscores the importance of subsurface vertical structure and connectivity relative to the extensively studied horizontal connectivity. It also alludes to the potential of using streams as mirrors for subsurface water chemistry, and the potential of using C-Q relationships to infer flow paths and biogeochemical reaction rates and the response of earth’s subsurface to climate and human perturbations. Broadly, this simple conceptual framework links CZ subsurface structure to its functioning under diverse climate, geology, and land cover conditions. 
    more » « less
  4. Abstract Headwater catchments play a vital role in regional water supply and ecohydrology, and a quantitative understanding of the hydrological partitioning in these catchments is critically needed, particularly under a changing climate. Recent studies have highlighted the importance of subsurface critical zone (CZ) structure in modulating the partitioning of precipitation in mountainous catchments; however, few existing studies have explicitly taken into account the 3D subsurface CZ structure. In this study, we designed realistic synthetic catchment models based on seismic velocity‐estimated 3D subsurface CZ structures. Integrated hydrologic modeling is then used to study the effects of the shape of the weathered bedrock and the associated storage capacity on various hydrologic fluxes and storages in mountainous headwater catchments. Numerical results show that the weathered bedrock affects not only the magnitude but also the peak time of both streamflow and subsurface dynamic storage. 
    more » « less
  5. Abstract Summer streamflow predictions are critical for managing water resources; however, warming‐induced shifts from snow to rain regimes impact low‐flow predictive models. Additionally, reductions in snowpack drive earlier peak flows and lower summer flows across the western United States increasing reliance on groundwater for maintaining summer streamflow. However, it remains poorly understood how groundwater contributions vary interannually. We quantify recession limb groundwater (RLGW), defined as the proportional groundwater contribution to the stream during the period between peak stream flow and low flow, to predict summer low flows across three diverse western US watersheds. We ask (a) how do snow and rain dynamics influence interannual variations of RLGW contributions and summer low flows?; (b) which watershed attributes impact the effectiveness of RLGW as a predictor of summer low flows? Linear models reveal that RLGW is a strong predictor of low flows across all sites and drastically improves low‐flow prediction compared to snow metrics at a rain‐dominated site. Results suggest that strength of RLGW control on summer low flows may be mediated by subsurface storage. Subsurface storage can be divided into dynamic (i.e., variability saturated) and deep (i.e., permanently saturated) components, and we hypothesize that interannual variability in dynamic storage contribution to streamflow drives RLGW variability. In systems with a higher proportion of dynamic storage, RLGW is a better predictor of summer low flow because the stream is more responsive to dynamic storage contributions compared to deep‐storage‐dominated systems. Overall, including RLGW improved low‐flow prediction across diverse watersheds. 
    more » « less