skip to main content


Title: Directly Probing the Local Coordination, Charge State, and Stability of Single Atom Catalysts by Advanced Electron Microscopy: A Review
Abstract

The drive for atom efficient catalysts with carefully controlled properties has motivated the development of single atom catalysts (SACs), aided by a variety of synthetic methods, characterization techniques, and computational modeling. The distinct capabilities of SACs for oxidation, hydrogenation, and electrocatalytic reactions have led to the optimization of activity and selectivity through composition variation. However, characterization methods such as infrared and X‐ray spectroscopy are incapable of direct observations at atomic scale. Advances in transmission electron microscopy (TEM) including aberration correction, monochromators, environmental TEM, and micro‐electro‐mechanical system based in situ holders have improved catalysis study, allowing researchers to peer into regimes previously unavailable, observing critical structural and chemical information at atomic scale. This review presents recent development and applications of TEM techniques to garner information about the location, bonding characteristics, homogeneity, and stability of SACs. Aberration corrected TEM imaging routinely achieves sub‐Ångstrom resolution to reveal the atomic structure of materials. TEM spectroscopy provides complementary information about local composition, chemical bonding, electronic properties, and atomic/molecular vibration with superior spatial resolution. In situ/operando TEM directly observe the evolution of SACs under reaction conditions. This review concludes with remarks on the challenges and opportunities for further development of TEM to study SACs.

 
more » « less
Award ID(s):
1955786 2031494 2031512
NSF-PAR ID:
10452194
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
17
Issue:
16
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transmission electron microscopy (TEM), and its counterpart, scanning TEM (STEM), are powerful materials characterization tools capable of probing crystal structure, composition, charge distribution, electronic structure, and bonding down to the atomic scale. Recent (S)TEM instrumentation developments such as electron beam aberration-correction as well as faster and more efficient signal detection systems have given rise to new and more powerful experimental methods, some of which (e.g., 4D-STEM, spectrum-imaging, in situ/operando (S)TEM)) facilitate the capture of high-dimensional datasets that contain spatially-resolved structural, spectroscopic, time- and/or stimulus-dependent information across the sub-angstrom to several micrometer length scale. Thus, through the variety of analysis methods available in the modern (S)TEM and its continual development towards high-dimensional data capture, it is well-suited to the challenge of characterizing isometric mixed-metal oxides such as pyrochlores, fluorites, and other complex oxides that reside on a continuum of chemical and spatial ordering. In this review, we present a suite of imaging and diffraction (S)TEM techniques that are uniquely suited to probe the many types, length-scales, and degrees of disorder in complex oxides, with a focus on disorder common to pyrochlores, fluorites and the expansive library of intermediate structures they may adopt. The application of these techniques to various complex oxides will be reviewed to demonstrate their capabilities and limitations in resolving the continuum of structural and chemical ordering in these systems. 
    more » « less
  2. Abstract

    Single‐atom and subnanocluster catalysts (SSCs) represent a highly promising class of low‐cost materials with high catalytic activity and high atom‐utilization efficiency. However, SSCs are susceptible to undergo restructuring during the reactions. Exploring the active sites of catalysts through in situ characterization techniques plays a critical role in studying reaction mechanism and guiding the design of optimum catalysts. In situ X‐ray absorption spectroscopy/small‐angle X‐ray scattering (XAS/SAXS) is promising and widely used for monitoring electronic structure, atomic configuration, and size changes of SSCs during real‐time working conditions. Unfortunately, there is no detailed summary of XAS/SAXS characterization results of SSCs. The recent advances in applying in situ XAS/SAXS to SSCs are thoroughly summarized in this review, including the atomic structure and oxidation state variations under open circuit and realistic reaction conditions. Furthermore, the reversible transformation of single‐atom catalysts (SACs) to subnanoclusters/nanoparticles and the application of in situ XAS/SAXS in subnanoclusters are discussed. Finally, the outlooks in modulating the SSCs and developing operando XAS/SAXS for SSCs are highlighted.

     
    more » « less
  3. Interfaces such as grain boundaries (GBs) and heterointerfaces (HIs) are known to play a crucial role in structure-property relationships of polycrystalline materials. While several methods have been used to characterize such interfaces, advanced transmission electron microscopy (TEM) and scanning TEM (STEM) techniques have proven to be uniquely powerful tools, enabling quantification of atomic structure, electronic structure, chemistry, order/disorder, and point defect distributions below the atomic scale. This review focuses on recent progress in characterization of polycrystalline oxide interfaces using S/TEM techniques including imaging, analytical spectroscopies such as energy dispersive X-ray spectroscopy (EDXS) and electron energy-loss spectroscopy (EELS) and scanning diffraction methods such as precession electron nano diffraction (PEND) and 4D-STEM. First, a brief introduction to interfaces, GBs, HIs, and relevant techniques is given. Then, experimental studies which directly correlate GB/HI S/TEM characterization with measured properties of polycrystalline oxides are presented to both strengthen our understanding of these interfaces, and to demonstrate the instrumental capabilities available in the S/TEM. Finally, existing challenges and future development opportunities are discussed. In summary, this article is prepared as a guide for scientists and engineers interested in learning about, and/or using advanced S/TEM techniques to characterize interfaces in polycrystalline materials, particularly ceramic oxides. 
    more » « less
  4. Abstract X-ray analysis is one of the most robust approaches to extract quantitative information from various materials and is widely used in various fields ever since Raimond Castaing established procedures to analyze electron-induced X-ray signals for materials characterization ‘70 years ago’. The recent development of aberration-correction technology in a (scanning) transmission electron microscopes (S/TEMs) offers refined electron probes below the Å level, making atomic-resolution X-ray analysis possible. In addition, the latest silicon drift detectors allow complex detector arrangements and new configurational designs to maximize the collection efficiency of X-ray signals, which make it feasible to acquire X-ray signals from single atoms. In this review paper, recent progress and advantages related to S/TEM-based X-ray analysis will be discussed: (i) progress in quantification for materials characterization including the recent applications to light element analysis, (ii) progress in analytical spatial resolution for atomic-resolution analysis and (iii) progress in analytical sensitivity toward single-atom detection and analysis in materials. Both atomic-resolution analysis and single-atom analysis are evaluated theoretically through multislice-based calculation for electron propagation in oriented crystalline specimen in combination with X-ray spectrum simulation. 
    more » « less
  5. null (Ed.)
    Although scanning transmission electron microscopy (STEM) images of individual heavy atoms were reported 50 years ago, the applications of atomic-resolution STEM imaging became wide spread only after the practical realization of aberration correctors on field-emission STEM/TEM instruments to form sub-Ångstrom electron probes. The innovative designs and advances of electron optical systems, the fundamental understanding of electron–specimen interaction processes, and the advances in detector technology all played a major role in achieving the goal of atomic-resolution STEM imaging of practical materials. It is clear that tremendous advances in computer technology and electronics, image acquisition and processing algorithms, image simulations, and precision machining synergistically made atomic-resolution STEM imaging routinely accessible. It is anticipated that further hardware/software development is needed to achieve three-dimensional atomic-resolution STEM imaging with single-atom chemical sensitivity, even for electron-beam-sensitive materials. Artificial intelligence, machine learning, and big-data science are expected to significantly enhance the impact of STEM and associated techniques on many research fields such as materials science and engineering, quantum and nanoscale science, physics and chemistry, and biology and medicine. This review focuses on advances of STEM imaging from the invention of the field-emission electron gun to the realization of aberration-corrected and monochromated atomic-resolution STEM and its broad applications. 
    more » « less