- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Christopher, Phillip (3)
-
Pan, Xiaoqing (3)
-
Tieu, Peter (3)
-
Yan, Xingxu (3)
-
Lee, Jaeha (2)
-
Zang, Wenjie (2)
-
Finzel, Jordan (1)
-
Graham, George (1)
-
Graham, George W. (1)
-
Tran, Ich C. (1)
-
Wang, Peikui (1)
-
Xu, Mingjie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Single-atom catalysts (SACs) offer efficient metal utilization and distinct reactivity compared to supported metal nanoparticles. Structure-function relationships for SACs often assume that active sites have uniform coordination environments at particular binding sites on support surfaces. Here, we investigate the distribution of coordination environments of Pt SAs dispersed on shape-controlled anatase TiO2supports specifically exposing (001) and (101) surfaces. Pt SAs on (101) are found on the surface, consistent with existing structural models, whereas those on (001) are beneath the surface after calcination. Pt SAs under (001) surfaces exhibit lower reactivity for CO oxidation than those on (101) surfaces due to their limited accessibility to gas phase species. Pt SAs deposited on commercial-TiO2are found both at the surface and in the bulk, posing challenges to structure-function relationship development. This study highlights heterogeneity in SA coordination environments on oxide supports, emphasizing a previously overlooked consideration in the design of SACs.more » « less
-
Tieu, Peter; Yan, Xingxu; Xu, Mingjie; Christopher, Phillip; Pan, Xiaoqing (, Small)Abstract The drive for atom efficient catalysts with carefully controlled properties has motivated the development of single atom catalysts (SACs), aided by a variety of synthetic methods, characterization techniques, and computational modeling. The distinct capabilities of SACs for oxidation, hydrogenation, and electrocatalytic reactions have led to the optimization of activity and selectivity through composition variation. However, characterization methods such as infrared and X‐ray spectroscopy are incapable of direct observations at atomic scale. Advances in transmission electron microscopy (TEM) including aberration correction, monochromators, environmental TEM, and micro‐electro‐mechanical system based in situ holders have improved catalysis study, allowing researchers to peer into regimes previously unavailable, observing critical structural and chemical information at atomic scale. This review presents recent development and applications of TEM techniques to garner information about the location, bonding characteristics, homogeneity, and stability of SACs. Aberration corrected TEM imaging routinely achieves sub‐Ångstrom resolution to reveal the atomic structure of materials. TEM spectroscopy provides complementary information about local composition, chemical bonding, electronic properties, and atomic/molecular vibration with superior spatial resolution. In situ/operando TEM directly observe the evolution of SACs under reaction conditions. This review concludes with remarks on the challenges and opportunities for further development of TEM to study SACs.more » « less
-
Lee, Jaeha; Tieu, Peter; Finzel, Jordan; Zang, Wenjie; Yan, Xingxu; Graham, George; Pan, Xiaoqing; Christopher, Phillip (, JACS Au)
An official website of the United States government
