skip to main content


Title: A Generalized Mixing Length Closure for Eddy‐Diffusivity Mass‐Flux Schemes of Turbulence and Convection
Abstract

Because of their limited spatial resolution, numerical weather prediction and climate models have to rely on parameterizations to represent atmospheric turbulence and convection. Historically, largely independent approaches have been used to represent boundary layer turbulence and convection, neglecting important interactions at the subgrid scale. Here we build on an eddy‐diffusivity mass‐flux (EDMF) scheme that represents all subgrid‐scale mixing in a unified manner, partitioning subgrid‐scale fluctuations into contributions from local diffusive mixing and coherent advective structures and allowing them to interact within a single framework. The EDMF scheme requires closures for the interaction between the turbulent environment and the plumes and for local mixing. A second‐order equation for turbulence kinetic energy (TKE) provides one ingredient for the diffusive local mixing closure, leaving a mixing length to be parameterized. Here, we propose a new mixing length formulation, based on constraints derived from the TKE balance. It expresses local mixing in terms of the same physical processes in all regimes of boundary layer flow. The formulation is tested at a range of resolutions and across a wide range of boundary layer regimes, including a stably stratified boundary layer, a stratocumulus‐topped marine boundary layer, and dry convection. Comparison with large eddy simulations (LES) shows that the EDMF scheme with this diffusive mixing parameterization accurately captures the structure of the boundary layer and clouds in all cases considered.

 
more » « less
Award ID(s):
1835860
NSF-PAR ID:
10452250
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
12
Issue:
11
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We demonstrate that an extended eddy‐diffusivity mass‐flux (EDMF) scheme can be used as a unified parameterization of subgrid‐scale turbulence and convection across a range of dynamical regimes, from dry convective boundary layers, through shallow convection, to deep convection. Central to achieving this unified representation of subgrid‐scale motions are entrainment and detrainment closures. We model entrainment and detrainment rates as a combination of turbulent and dynamical processes. Turbulent entrainment/detrainment is represented as downgradient diffusion between plumes and their environment. Dynamical entrainment/detrainment is proportional to a ratio of a relative buoyancy of a plume and a vertical velocity scale, that is modulated by heuristic nondimensional functions which represent their relative magnitudes and the enhanced detrainment due to evaporation from clouds in drier environment. We first evaluate the closures offline against entrainment and detrainment rates diagnosed from large‐eddy simulations (LES) in which tracers are used to identify plumes, their turbulent environment, and mass and tracer exchanges between them. The LES are of canonical test cases of a dry convective boundary layer, shallow convection, and deep convection, thus spanning a broad range of regimes. We then compare the LES with the full EDMF scheme, including the new closures, in a single column model (SCM). The results show good agreement between the SCM and LES in quantities that are key for climate models, including thermodynamic profiles, cloud liquid water profiles, and profiles of higher moments of turbulent statistics. The SCM also captures well the diurnal cycle of convection and the onset of precipitation.

     
    more » « less
  2. Abstract

    Turbulence parameterizations for convective boundary layer in coarse‐scale atmospheric models usually consider a combination of the eddy‐diffusive transport and a non‐local transport, typically in the form of a mass flux term, such as the widely adopted eddy‐diffusivity mass‐flux (EDMF) approach. These two types of turbulent transport are generally considered to be independent of each other. Using results from large‐eddy simulations, here, we show that a Taylor series expansion of the updraft and downdraft mass‐flux transport can be used to approximate the eddy‐diffusivity transport in the atmospheric surface layer and the lower part of the mixed layer, connecting both eddy‐diffusivity and mass‐flux transport theories in convective conditions, which also quantifies departure from the Monin‐Obukhov similarity (MOS) in the surface layer. This study provides a theoretical support for a unified EDMF parameterization applied to both the surface layer and mixed layer and highlights important correction required for surface models relying on MOS.

     
    more » « less
  3. Abstract Subgrid-scale turbulence in numerical weather prediction models is typically handled by a PBL parameterization. These schemes attempt to represent turbulent mixing processes occurring below the resolvable scale of the model grid in the vertical direction, and they act upon temperature, moisture, and momentum within the boundary layer. This study varies the PBL mixing strength within 4-km WRF simulations of a 26–29 January 2015 snowstorm to assess the sensitivity of baroclinic cyclones to eddy diffusivity intensity. The bulk critical Richardson number for unstable regimes is varied between 0.0 and 0.25 within the YSU PBL scheme as a way of directly altering the depth and magnitude of subgrid-scale turbulent mixing. Results suggest that varying the bulk critical Richardson number is similar to selecting a different PBL parameterization. Differences in boundary layer moisture availability, arising from reduced entrainment of dry, free tropospheric air, lead to variations in the magnitude of latent heat release above the warm frontal region, producing stronger upper-tropospheric downstream ridging in simulations with less PBL mixing. The more amplified flow pattern impedes the northeastward propagation of the surface cyclone and results in a westward shift of precipitation. In addition, trajectory analysis indicates that ascending parcels in the less-mixing simulations condense more water vapor and terminate at a higher potential temperature level than do ascending parcels in the more-mixing simulations, suggesting stronger latent heat release when PBL mixing is reduced. These results suggest that spread within ensemble forecast systems may be improved by perturbing PBL mixing parameters that are not well constrained. 
    more » « less
  4. null (Ed.)
    Dimensional analysis suggests that the dissipation length scale ( $\ell _{{\it\epsilon}}=u_{\star }^{3}/{\it\epsilon}$ ) is the appropriate scale for the shear-production range of the second-order streamwise structure function in neutrally stratified turbulent shear flows near solid boundaries, including smooth- and rough-wall boundary layers and shear layers above canopies (e.g. crops, forests and cities). These flows have two major characteristics in common: (i) a single velocity scale, i.e. the friction velocity ( $u_{\star }$ ) and (ii) the presence of large eddies that scale with an external length scale much larger than the local integral length scale. No assumptions are made about the local integral scale, which is shown to be proportional to $\ell _{{\it\epsilon}}$ for the scaling analysis to be consistent with Kolmogorov’s result for the inertial subrange. Here ${\it\epsilon}$ is the rate of dissipation of turbulent kinetic energy (TKE) that represents the rate of energy cascade in the inertial subrange. The scaling yields a log-law dependence of the second-order streamwise structure function on ( $r/\ell _{{\it\epsilon}}$ ), where $r$ is the streamwise spatial separation. This scaling law is confirmed by large-eddy simulation (LES) results in the roughness sublayer above a model canopy, where the imbalance between local production and dissipation of TKE is much greater than in the inertial layer of wall turbulence and the local integral scale is affected by two external length scales. Parameters estimated for the log-law dependence on ( $r/\ell _{{\it\epsilon}}$ ) are in reasonable agreement with those reported for the inertial layer of wall turbulence. This leads to two important conclusions. Firstly, the validity of the $\ell _{{\it\epsilon}}$ -scaling is extended to shear flows with a much greater imbalance between production and dissipation, indicating possible universality of the shear-production range in flows near solid boundaries. Secondly, from a modelling perspective, $\ell _{{\it\epsilon}}$ is the appropriate scale to characterize turbulence in shear flows with multiple externally imposed length scales. 
    more » « less
  5. Abstract

    A new version of the stochastic multiplume Jet Propulsion Laboratory Eddy‐Diffusivity/Mass‐Flux (JPL‐EDMF) parameterization which consistently couples the simplified Khairoutdinov and Kogan (2000),https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2, warm phase cloud microphysical parameterization with the parameterization of cloud macrophysical and subgrid scale dynamical processes is described. The new parameterization combines the EDMF approach with an assumed shape of a joint probability density function of thermodynamic and kinematic variables which provide the basis for the computation of all parameterized processes. As far as we are aware this is the first attempt to consistently couple all of these parameterized processes in the EDMF framework. This paper is part one of a two paper series. Here, the JPL‐EDMF parameterization is described and benchmark simulations of precipitating stratocumulus and cumulus convection are performed in a single‐column‐model framework. The parameterization results compare favorably to the reference large‐eddy‐simulation results. In the second part (Smalley et al., 2022,https://doi.org/10.1029/2021MS002729) the JPL‐EDMF parameterization is validated for a wide range of observation‐based scenarios covering the continuous transition from subtropical stratocumulus to cumulus convection derived from global reanalysis, and parameterization uncertainties are studied in detail.

     
    more » « less