skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arctic and Antarctic Sea Ice Mean State in the Community Earth System Model Version 2 and the Influence of Atmospheric Chemistry
Abstract Arctic and Antarctic sea ice has undergone significant and rapid change with the changing climate. Here, we present preindustrial and historical results from the newly released Community Earth System Model Version 2 (CESM2) to assess the Arctic and Antarctic sea ice. Two configurations of the CESM2 are available that differ only in their atmospheric model top and the inclusion of comprehensive atmospheric chemistry, including prognostic aerosols. The CESM2 configuration with comprehensive atmospheric chemistry has significantly thicker Arctic sea ice year‐round and better captures decreasing trends in sea ice extent and volume over the satellite period. In the Antarctic, both CESM configurations have similar mean state ice extent and volume, but the ice extent trends are opposite to satellite observations. We find that differences in the Arctic sea ice between CESM2 configurations are the result of differences in liquid clouds. Over the Arctic, the CESM2 configuration without prognostic aerosol formation has fewer aerosols to form cloud condensation nuclei, leading to thinner liquid clouds. As a result, the sea ice receives much more shortwave radiation early in the melt season, driving a stronger ice albedo feedback and leading to additional sea ice loss and significantly thinner ice year‐round. The aerosols necessary for the Arctic liquid cloud formation are produced from different precursor emissions and transported to the Arctic. Thus, the main reason sea ice differs in the Arctic is the transport of cloud‐impacting aerosols into the region, while the Antarctic remains relatively pristine from extrapolar aerosol transport.  more » « less
Award ID(s):
1724748
PAR ID:
10452263
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
125
Issue:
8
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Chemistry in the Arctic: Clouds, Halogens, and Aerosols (CHACHA) field project aimed to advance the understanding of coupled meteorological and chemical processes in the atmospheric boundary layer during the seasonal increase in sea ice fracturing in spring. CHACHA sought to understand the interactions between this changing snow-covered surface, surface-coupled clouds, sea spray aerosols, multiphase halogen chemistry, and impacts of emissions from oil and gas extraction on atmospheric chemistry. The project measured greenhouse gases, reactive gases, size-resolved aerosol number concentrations, cloud microphysical properties, and meteorological conditions in real time, while also collecting particles for offline analysis. Two instrumented aircraft were deployed: the Purdue University Airborne Laboratory for Atmospheric Research and the University of Wyoming King Air. Flights were conducted out of Utqiaġvik, Alaska, between 21 February and 16 April 2022, sampling air over snow-covered and newly frozen sea ice in the Beaufort and Chukchi Seas, over open leads, and over the snow-covered tundra of the North Slope of Alaska, including the oil and gas extraction region near Prudhoe Bay. Observations showed that reactive bromine gases generally peaked near the snow-covered surface and decayed rapidly within the lowest few hundred meters where ozone was depleted, with concentrations reduced by nitrogen oxides emitted from oil fields. Cloud microphysical measurements revealed that thin clouds over and downwind of leads grew in vertical extent after contact with open water. Results from dropsondes indicated that convective boundary layers developed over leads, with depths ranging from 250 to 850 m depending on the fetch. 
    more » « less
  2. Abstract Global climate models (GCMs) are challenged by difficulties in simulating cloud phase and cloud radiative effect over the Southern Ocean (SO). Some of the new‐generation GCMs predict too much liquid and too little ice in mixed‐phase clouds. This misrepresentation of cloud phase in GCMs results in weaker negative cloud feedback over the SO and a higher climate sensitivity. Based on a model comparison with observational data obtained during the Southern Ocean Cloud Radiation and Aerosol Transport Experimental Study, this study addresses a key uncertainty in the Community Earth System Model version 2 (CESM2) related to cloud phase, namely ice formation in pristine remote SO clouds. It is found that sea spray organic aerosols (SSOAs) are the most important type of ice nucleating particles (INPs) over the SO with concentrations 1 order of magnitude higher than those of dust INPs based on measurements and CESM2 simulations. Secondary ice production (SIP) which includes riming splintering, rain droplet shattering, and ice‐ice collisional fragmentation as implemented in CESM2 is the dominant ice production process in moderately cold clouds with cloud temperatures greater than −20°C. SIP enhances the in‐cloud ice number concentrations (Ni) by 1–3 orders of magnitude and predicts more mixed‐phase (with percentage occurrence increased from 15% to 21%), in better agreement with the observations. This study highlights the importance of accurately representing the cloud phase over the pristine remote SO by considering the ice nucleation of SSOA and SIP processes, which are currently missing in most GCM cloud microphysics parameterizations. 
    more » « less
  3. Biomass burning can affect climate via the emission of aerosols and their subsequent impact on radiation, cloud microphysics, and surface and atmospheric albedo. Biomass burning emissions (BBEs) over the boreal region have strongly increased during the last decade and are expected to continue increasing as the climate warms. Climate models simulate aerosol processes, yet historical and future Coupled Model Intercomparison Project (CMIP) simulations have no active fire component, and BBEs are prescribed as external forcings. Here, we show that CMIP6 used future boreal BBEs scenarios with unrealistic near-zero trends that have a large impact on climate trends. By running sensitivity experiments with ramped up boreal emissions based on observed trends, we find that increasing boreal BBEs reduces global warming by 12% and Arctic warming by 38%, reducing the loss of sea ice. Tropical precipitation shifts southward as a result of the hemispheric difference in boreal aerosol forcing and subsequent temperature response. These changes stem from the impact of aerosols on clouds, increasing cloud droplet number concentration, cloud optical depth, and low cloud cover, ultimately reducing surface shortwave flux over northern latitudes. Our results highlight the importance of realistic boreal BBEs in climate model simulations and the need for improved understanding of boreal emission trends and aerosol–climate interactions. 
    more » « less
  4. The tethered balloon-borne measurement system BELUGA (Balloon-bornE moduLar Utility for profilinG the lower Atmosphere) was deployed over the Arctic sea ice for 4 weeks in summer 2020 as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition. Using BELUGA, vertical profiles of dynamic, thermodynamic, aerosol particle, cloud, radiation, and turbulence properties were measured from the ground up to a height of 1,500 m. BELUGA was operated during an anomalously warm period with frequent liquid water clouds and variable sea ice conditions. Three case studies of liquid water phase, single-layer clouds observed on 3 days (July 13, 23, and 24, 2020) are discussed to show the potential of the collected data set to comprehensively investigate cloud properties determining cloud evolution in the inner Arctic over sea ice. Simulated back-trajectories show that the observed clouds have evolved within 3 different air masses (“aged Arctic,” “advected over sea ice,” and “advected over open ocean”), which left distinct fingerprints in the cloud properties. Strong cloud top radiative cooling rates agree with simulated results of previous studies. The weak warming at cloud base is mostly driven by the vertical temperature profile between the surface and cloud base. In-cloud turbulence induced by the cloud top cooling was similar in strength compared to former studies. From the extent of the mixing layer, it is speculated that the overall cloud cooling is stronger and thus faster in the warm oceanic air mass. Larger aerosol particle number concentrations and larger sizes were observed in the air mass advected over the sea ice and in the air mass advected over the open ocean. 
    more » « less
  5. Low-level clouds in the Arctic affect the surface energy budget and vertical transport of heat and moisture. The limited availability of cloud-droplet-forming aerosol particles strongly impacts cloud properties and lifetime. Vertical particle distributions are required to study aerosol–cloud interaction over sea ice comprehensively. This article presents vertically resolved measurements of aerosol particle number concentrations and sizes using tethered balloons. The data were collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition in the summer of 2020. Thirty-four profiles of aerosol particle number concentration were observed in 2 particle size ranges: 12–150 nm (N12−150) and above 150 nm (N>150). Concurrent balloon-borne meteorological measurements provided context for the continuous profiles through the cloudy atmospheric boundary layer. Radiosoundings, cloud remote sensing data, and 5-day back trajectories supplemented the analysis. The majority of aerosol profiles showed more particles above the lowest temperature inversion, on average, double the number concentration compared to below. Increased N12−150 up to 3,000 cm−3 were observed in the free troposphere above low-level clouds related to secondary particle formation. Long-range transport of pollution increased N>150 to 310 cm−3 in a warm, moist air mass. Droplet activation inside clouds caused reductions of N>150 by up to 100%, while the decrease in N12−150 was less than 50%. When low-level clouds were thermodynamically coupled with the surface, profiles showed 5 times higher values of N12−150 in the free troposphere than below the cloud-capping temperature inversion. Enhanced N12−150 and N>150 interacting with clouds were advected above the lowest inversion from beyond the sea ice edge when clouds were decoupled from the surface. Vertically discontinuous aerosol profiles below decoupled clouds suggest that particles emitted at the surface are not transported to clouds in these conditions. It is concluded that the cloud-surface coupling state and free tropospheric particle abundance are crucial when assessing the aerosol budget for Arctic low-level clouds over sea ice. 
    more » « less