Abstract Global climate models (GCMs) are challenged by difficulties in simulating cloud phase and cloud radiative effect over the Southern Ocean (SO). Some of the new‐generation GCMs predict too much liquid and too little ice in mixed‐phase clouds. This misrepresentation of cloud phase in GCMs results in weaker negative cloud feedback over the SO and a higher climate sensitivity. Based on a model comparison with observational data obtained during the Southern Ocean Cloud Radiation and Aerosol Transport Experimental Study, this study addresses a key uncertainty in the Community Earth System Model version 2 (CESM2) related to cloud phase, namely ice formation in pristine remote SO clouds. It is found that sea spray organic aerosols (SSOAs) are the most important type of ice nucleating particles (INPs) over the SO with concentrations 1 order of magnitude higher than those of dust INPs based on measurements and CESM2 simulations. Secondary ice production (SIP) which includes riming splintering, rain droplet shattering, and ice‐ice collisional fragmentation as implemented in CESM2 is the dominant ice production process in moderately cold clouds with cloud temperatures greater than −20°C. SIP enhances the in‐cloud ice number concentrations (Ni) by 1–3 orders of magnitude and predicts more mixed‐phase (with percentage occurrence increased from 15% to 21%), in better agreement with the observations. This study highlights the importance of accurately representing the cloud phase over the pristine remote SO by considering the ice nucleation of SSOA and SIP processes, which are currently missing in most GCM cloud microphysics parameterizations. 
                        more » 
                        « less   
                    
                            
                            Arctic and Antarctic Sea Ice Mean State in the Community Earth System Model Version 2 and the Influence of Atmospheric Chemistry
                        
                    
    
            Abstract Arctic and Antarctic sea ice has undergone significant and rapid change with the changing climate. Here, we present preindustrial and historical results from the newly released Community Earth System Model Version 2 (CESM2) to assess the Arctic and Antarctic sea ice. Two configurations of the CESM2 are available that differ only in their atmospheric model top and the inclusion of comprehensive atmospheric chemistry, including prognostic aerosols. The CESM2 configuration with comprehensive atmospheric chemistry has significantly thicker Arctic sea ice year‐round and better captures decreasing trends in sea ice extent and volume over the satellite period. In the Antarctic, both CESM configurations have similar mean state ice extent and volume, but the ice extent trends are opposite to satellite observations. We find that differences in the Arctic sea ice between CESM2 configurations are the result of differences in liquid clouds. Over the Arctic, the CESM2 configuration without prognostic aerosol formation has fewer aerosols to form cloud condensation nuclei, leading to thinner liquid clouds. As a result, the sea ice receives much more shortwave radiation early in the melt season, driving a stronger ice albedo feedback and leading to additional sea ice loss and significantly thinner ice year‐round. The aerosols necessary for the Arctic liquid cloud formation are produced from different precursor emissions and transported to the Arctic. Thus, the main reason sea ice differs in the Arctic is the transport of cloud‐impacting aerosols into the region, while the Antarctic remains relatively pristine from extrapolar aerosol transport. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1724748
- PAR ID:
- 10452263
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 125
- Issue:
- 8
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Biomass burning can affect climate via the emission of aerosols and their subsequent impact on radiation, cloud microphysics, and surface and atmospheric albedo. Biomass burning emissions (BBEs) over the boreal region have strongly increased during the last decade and are expected to continue increasing as the climate warms. Climate models simulate aerosol processes, yet historical and future Coupled Model Intercomparison Project (CMIP) simulations have no active fire component, and BBEs are prescribed as external forcings. Here, we show that CMIP6 used future boreal BBEs scenarios with unrealistic near-zero trends that have a large impact on climate trends. By running sensitivity experiments with ramped up boreal emissions based on observed trends, we find that increasing boreal BBEs reduces global warming by 12% and Arctic warming by 38%, reducing the loss of sea ice. Tropical precipitation shifts southward as a result of the hemispheric difference in boreal aerosol forcing and subsequent temperature response. These changes stem from the impact of aerosols on clouds, increasing cloud droplet number concentration, cloud optical depth, and low cloud cover, ultimately reducing surface shortwave flux over northern latitudes. Our results highlight the importance of realistic boreal BBEs in climate model simulations and the need for improved understanding of boreal emission trends and aerosol–climate interactions.more » « less
- 
            The tethered balloon-borne measurement system BELUGA (Balloon-bornE moduLar Utility for profilinG the lower Atmosphere) was deployed over the Arctic sea ice for 4 weeks in summer 2020 as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition. Using BELUGA, vertical profiles of dynamic, thermodynamic, aerosol particle, cloud, radiation, and turbulence properties were measured from the ground up to a height of 1,500 m. BELUGA was operated during an anomalously warm period with frequent liquid water clouds and variable sea ice conditions. Three case studies of liquid water phase, single-layer clouds observed on 3 days (July 13, 23, and 24, 2020) are discussed to show the potential of the collected data set to comprehensively investigate cloud properties determining cloud evolution in the inner Arctic over sea ice. Simulated back-trajectories show that the observed clouds have evolved within 3 different air masses (“aged Arctic,” “advected over sea ice,” and “advected over open ocean”), which left distinct fingerprints in the cloud properties. Strong cloud top radiative cooling rates agree with simulated results of previous studies. The weak warming at cloud base is mostly driven by the vertical temperature profile between the surface and cloud base. In-cloud turbulence induced by the cloud top cooling was similar in strength compared to former studies. From the extent of the mixing layer, it is speculated that the overall cloud cooling is stronger and thus faster in the warm oceanic air mass. Larger aerosol particle number concentrations and larger sizes were observed in the air mass advected over the sea ice and in the air mass advected over the open ocean.more » « less
- 
            Abstract. The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol–cloud radiative forcing produced by ice clouds.more » « less
- 
            We assess Antarctic sea ice climatology and variability in version 2 of the Community Earth System Model (CESM2), and compare it to that in the older CESM1 and (where appropriate) real-world observations. In CESM2, Antarctic sea ice is thinner and less extensive than in CESM1, though sea ice area is still approximately 1 million km2 greater in CESM2 than in present-day observations. Though there is less Antarctic sea ice in CESM2, the annual cycle of ice growth and melt is more vigorous in CESM2 than in CESM1. A new mushy-layer thermodynamics formulation implemented in the latest version of the Community Ice Code (CICE) in CESM2 accounts for both greater frazil ice forma- tion in coastal polynyas and more snow-to-ice conversion near the edge of the ice pack in the new model. Greater winter ice divergence in CESM2 (relative to CESM1) is due to stronger stationary wave activity and greater wind stress curl over the ice pack. Greater wind stress curl, in turn, drives more warm water upwelling under the ice pack, thinning it and decreasing its extent. Overall, differences between Antarctic sea ice in CESM2 and CESM1 arise due to both differences in their sea ice thermodynamics formulations, and differences in their coupled atmosphere-ocean states.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
