skip to main content


Title: A close look at polymer degree of crystallinity versus polymer crystalline quality
Abstract

In the broader polymer field, the term ‘crystallinity’ is often used rather loosely. However, increasingly, it becomes critical to clearly distinguish between degree of crystallinity, which provides the fractional amount of crystalline phase in a polymer, and the crystalline quality, which describes the perfection of the crystalline moieties that may form in a polymer. The reason is that these different structural features dictate important properties of plastic materials, including the mechanical properties of commodity polymers and the behavior of macromolecular ferroelectrics; they also determine which photophysical processes occur in semiconducting polymers. Hence, rigor needs to be applied when establishing structure/processing/property interrelations; and it should become a general practice that specific functions are clearly attributed to the degree of crystallinity, the crystalline quality or a combination of the two. In this perspective,in memoriamof Professor Dick Jones, a long‐time member of IUPAC's Polymer Division, we discuss the challenges of identifying—and distinguishing between—these important structural characteristics when using commonly applied measuring techniques and/or theoretical approaches. This task is often elaborate, as small changes in the chemical nature of the polymer and/or processing conditions selected can have drastic effects on both the crystalline quality and the degree of crystallinity, an issue that combined with the general ambiguity of data obtained with methodologies used to characterize polymer structures, theoretically or experimentally based. © 2023 The Authors.Polymer Internationalpublished by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.

 
more » « less
NSF-PAR ID:
10452331
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Polymer International
Volume:
72
Issue:
10
ISSN:
0959-8103
Page Range / eLocation ID:
p. 855-860
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The conductivity and charge transport mobility of conjugated polymers (CPs) are largely correlated with their degree of crystallinity, rendering the crystallization of CPs an important endeavour. However, such tasks can be challenging, especially in the absence of sidechain functionalization. In this study, we demonstrate that the incorporation of a small amount of oligomers, specifically tetraaniline, can induce crystallization of the parent polymer, polyaniline, through a single-step self-assembly process. The resulting crystals are compositionally homogeneous because the oligomers and their parent polymer share the same repeating unit and are both electroactive. Mechanistic studies reveal that the tetraaniline forms a crystalline seed that subsequently guides the assembly of polyaniline due to their structural similarities. Applying this oligomer-assisted crystallization approach to polyaniline with defined molecular weights resulted in single crystalline nanowires for 5000 Da polyaniline, and nanowires with strong preferential chain orientation for those with molecular weights between 10 000 and 100 000 Da. Absorption studies reveal that the polymer chains are in an expanded conformation, which likely contributed to the high degree of packing order. Two-probe, single nanowire measurements show that the crystals have conductivity as high as 19.5 S cm −1 . This method is simple, general, and can potentially be applied to other CPs. 
    more » « less
  2. Abstract

    The true structure of alternating conjugated polymers—the state‐of‐the‐art materials for many organic electronics—often deviates from the idealized picture. Homocoupling defects are in fact inherent to the widely used cross‐coupling polymerization methods. Nevertheless, many polymers still perform excellently in the envisaged applications, which raises the question if one should really care about these imperfections. This article looks at the relevance of chemical precision (and lack thereof) in conjugated polymers covering the entire spectrum from the molecular scale, to the micro and mesostructure, up to the device level. The different types of polymerization errors for the alkoxylated variant of the benchmark (semi)crystalline polymer poly[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene (PBTTT) are identified, visualized, and quantified and a general strategy to avoid homocoupling is introduced. Through a combination of experiments and supported by simulations, it is shown that these coupling defects hinder fullerene intercalation and limit device performance as compared to the homocoupling‐free analog. This clearly demonstrates that structural defects do matter and should be generally avoided, in particular when the geometrical regularity of the polymer is essential. These insights likely go beyond the specific PBTTT derivatives studied here and are of general relevance for the wider organic electronics field.

     
    more » « less
  3. The multiscale morphology and device performance of printed semiconducting polymers are highly sensitive to the substrate/ink interfacial properties during solution coating. There is an urgent need for general design rules correlating the substrate properties and conjugated polymer (CP) morphology, which do not yet exist. Dynamic surfaces are particularly promising for templating highly crystalline and highly aligned conjugated polymer thin films and have been shown in recent studies. Herein, we implement the dynamic-templating method using a series of liquid-infused nanoporous substrates as a tool to study the impact of template reconfigurability and chemistry on the multiscale morphology of conjugated polymer thin films, using a high performing donor–acceptor polymer (DPP-BTz) as a model compound. By quantifying the enthalpy of adsorption, we demonstrate that the strength of template–CP interactions directly measures the effectiveness of dynamic surfaces in promoting conjugated polymer crystallization and alignment. We further show that the enthalpy of interactions increases by enhancing the template dynamics and is sensitively modulated by template chemistry. Specifically, increasing the template–CP interactions leads to a larger domain size and higher degree of crystallinity in templated conjugated polymer thin films prepared by meniscus-guided solution coating. This observation validates our hypothesis that dynamic templates function by promoting the nucleation of conjugated polymers. We also demonstrate that such dynamic-template-dependent morphology is independent of coating speed. Notably, the enhanced morphological properties modulate the charge carrier mobility in field-effect transistors (FETs) over an order of magnitude reaching a hole mobility of 2.8 cm 2 V −1 s −1 . This work is a significant step towards establishing general guidelines on how the substrate–ink interfacial properties influence morphology and performance of solution coated CP thin films. 
    more » « less
  4. Abstract

    Controlling polymer chain alignment through processing is a means of tuning the charge transport of solution‐based conjugated polymers. In this work, a processing strategy is proposed in which an external electric field (E‐field) is applied to the coating blade (E‐blade) to align polymer chain during solution‐shearing, a meniscus‐guided coating technique. A theoretical model based on dielectrophoresis quantitatively describes and predicts the alignment process and is used to guide the selection of the optimal conditions of the applied E‐field. Using these conditions, more than twofold increase in chain alignment is observed for E‐bladed thin films of a diketopyrrolopyrrole (DPP) semiconducting polymer without affecting other morphological aspects such as film thickness, film coverage, or fiber‐like aggregation. Organic field effect transistors based on the E‐bladed DPP polymer are fabricated at ambient conditions and over areas of a few cm2. They display a threefold improvement in their mobilities and a strong enhancement in charge transport anisotropy compared to films prepared without E‐field. These results reveal a synergistic alignment effect from both the solution‐shearing process and the applied E‐field, and introduce a novel and general approach to control the morphology and the electrical properties of solution‐coated conjugated polymer thin films.

     
    more » « less
  5. Abstract

    Molecular additives are often used to enhance dynamic motion of polymeric chains, which subsequently alter the functional and physical properties of polymers. However, controlling the chain dynamics of semiconducting polymer thin films and understanding the fundamental mechanisms of such changes is a new area of research. Here, cycloparaphenylenes (CPPs) are used as conjugated molecular additives to tune the dynamic behaviors of diketopyrrolopyrrole‐based (DPP‐based) semiconducting polymers. It is observed that the addition of CPPs results in significant improvement in the stretchability of the DPP‐based polymers without adversely affecting their mobility, which arises from the enhanced polymer dynamic motion and reduced long‐range crystalline order. The polymer films retain their fiber‐like morphology and short‐range ordered aggregates, which leads to high mobility. Fully stretchable transistors are subsequently fabricated using CPP/semiconductor composites as active layers. These composites are observed to maintain high mobilities when strained and after repeated applied strains. Interestingly, CPPs are also observed to improve the contact resistance and charge transport of the fully stretchable transistors. ln summary, these results collectively indicate that controlling the dynamic motion of polymer semiconductors is proved to be an effective way to improve their stretchability.

     
    more » « less