skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unifying Advective and Diffusive Descriptions of Bedform Pumping in the Benthic Biolayer of Streams
Abstract Many water quality and ecosystem functions performed by streams occur in the benthic biolayer, the biologically active upper (~5 cm) layer of the streambed. Solute transport through the benthic biolayer is facilitated by bedform pumping, a physical process in which dynamic and static pressure variations over the surface of stationary bedforms (e.g., ripples and dunes) drive flow across the sediment‐water interface. In this paper we derive two predictive modeling frameworks, one advective and the other diffusive, for solute transport through the benthic biolayer by bedform pumping. Both frameworks closely reproduce patterns and rates of bedform pumping previously measured in the laboratory, provided that the diffusion model's dispersion coefficient declines exponentially with depth. They are also functionally equivalent, such that parameter sets inferred from the 2D advective model can be applied to the 1D diffusive model, and vice versa. The functional equivalence and complementary strengths of these two models expand the range of questions that can be answered, for example, by adopting the 2D advective model to study the effects of geomorphic processes (such as bedform adjustments to land use change) on flow‐dependent processes and the 1D diffusive model to study problems where multiple transport mechanisms combine (such as bedform pumping and turbulent diffusion). By unifying 2D advective and 1D diffusive descriptions of bedform pumping, our analytical results provide a straightforward and computationally efficient approach for predicting, and better understanding, solute transport in the benthic biolayer of streams and coastal sediments.  more » « less
Award ID(s):
2021015 1840504
PAR ID:
10452366
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
56
Issue:
11
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we develop and validate a rigorous modeling framework, based on Duhamel's Theorem, for the unsteady one‐dimensional vertical transport of a solute across a flat sediment‐water interface (SWI) and through the benthic biolayer of a turbulent stream. The modeling framework is novel in capturing the two‐way coupling between evolving solute concentrations above and below the SWI and in allowing for a depth‐varying diffusivity. Three diffusivity profiles within the sediment (constant, exponentially decaying, and a hybrid model) are evaluated against an extensive set of previously published laboratory measurements of turbulent mass transfer across the SWI. The exponential diffusivity profile best represents experimental observations and its reference diffusivity scales with the permeability Reynolds number, a dimensionless measure of turbulence at the SWI. The depth over which turbulence‐enhanced diffusivity decays is of the order of centimeters and comparable to the thickness of the benthic biolayer. Thus, turbulent mixing across the SWI may serve as a universal transport mechanism, supplying the nutrient and energy fluxes needed to sustain microbial growth, and nutrient processing, in the benthic biolayer of stream and coastal sediments. 
    more » « less
  2. Abstract Hyporheic zones are commonly regarded as resilient and enduring interfaces between groundwater and surface water in river corridors. In particular, bedform‐induced advective pumping hyporheic exchange (bedform‐induced exchange) is often perceived as a relatively persistent mechanism in natural river systems driving water, solutes, and energy exchanges between the channel and its surrounding streambed sediments. Numerous studies have been based on this presumption. To evaluate the persistence of hyporheic zones under varying hydrologic conditions, we use a multi‐physics framework to model advective pumping bedform‐induced hyporheic exchange in response to a series of seasonal‐ and event‐scale groundwater table fluctuation scenarios, which lead to episodic river‐aquifer disconnections and reconnections. Our results suggest that hyporheic exchange is not as ubiquitous as generally assumed. Instead, the bedform‐induced hyporheic exchange is restricted to a narrow range of conditions characterized by minor river‐groundwater head differences, is intermittent, and can be easily obliterated by minor losing groundwater conditions. These findings shed light on the fragility of bedform‐induced hyporheic exchange and have important implications for biogeochemical transformations along river corridors. 
    more » « less
  3. Permeable and porous surfaces are common in natural and engineered systems. Flow and transport above such surfaces are significantly affected by the surface properties, e.g. matrix porosity and permeability. However, the relationship between such properties and macroscopic solute transport is largely unknown. In this work, we focus on mass transport in a two-dimensional channel with permeable porous walls under fully developed laminar flow conditions. By means of perturbation theory and asymptotic analysis, we derive the set of upscaled equations describing mass transport in the coupled channel–porous-matrix system and an analytical expression relating the dispersion coefficient with the properties of the surface, namely porosity and permeability. Our analysis shows that their impact on the dispersion coefficient strongly depends on the magnitude of the Péclet number, i.e. on the interplay between diffusive and advective mass transport. Additionally, we demonstrate different scaling behaviours of the dispersion coefficient for thin or thick porous matrices. Our analysis shows the possibility of controlling the dispersion coefficient, i.e. transverse mixing, by either active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling matrix effective properties) for a given Péclet number. By elucidating the impact of matrix porosity and permeability on solute transport, our upscaled model lays the foundation for the improved understanding, control and design of microporous coatings with targeted macroscopic transport features. 
    more » « less
  4. Abstract Olivine‐hosted melt inclusions are an important archive of pre‐eruptive processes such as magma storage, mixing and subsequent ascent through the crust. However, this record can be modified by post‐entrapment diffusion of H+through the olivine lattice. Existing studies often use spherical or 1D models to track melt inclusion dehydration that fail to account for complexities in geometry, diffusive anisotropy and sectioning effects. Here we develop a finite element 3D multiphase diffusion model for the dehydration of olivine‐hosted melt inclusions that includes natural crystal geometries and multiple melt inclusions. We use our 3D model to test the reliability of simplified analytical and numerical models (1D and 2D) using magma ascent conditions from the 1977 eruption of Seguam volcano, Alaska. We find that 1D models underestimate melt inclusion water loss, typically by ∼30%, and thus underestimate magma decompression rates, by up to a factor of 5, when compared to the 3D models. An anisotropic analytical solution that we present performs well and recovers decompression rates within a factor of 2, in the situations in which it is valid. 3D models that include multiple melt inclusions show that inclusions can shield each other and reduce the amount of water loss upon ascent. This shielding effect depends on decompression rate, melt inclusion size, and crystallographic direction. Our modeling approach shows that factors such as 3D crystal geometry and melt inclusion configuration can play an important role in constraining accurate decompression rates and recovering water contents in natural magmatic systems. 
    more » « less
  5. Amplified warming of high latitudes and rapid thaw of frozen ground threaten permafrost carbon stocks. The presence of permafrost modulates water infiltration and flow, as well as sediment transport, on soil-mantled slopes, influencing the balance of advective fluvial processes to diffusive processes on hillslopes in ways that are different from temperate settings. These processes that shape permafrost landscapes also impact the carbon stored on soil-mantled hillslopes via temperature, saturation, and slope stability such that carbon stocks and landscape morphometry should be closely linked. We studied > 69,000 headwater basins between 25° and 90 °N to determine whether the thermal state of the soil sets the balance between hillslope (diffusive) and fluvial (advective) erosion processes, as evidenced by the density of the channel networks (i.e., drainage density) and the proportion of convex to concave topography (hillslopes and river valleys, respectively). Watersheds within permafrost regions have lower drainage densities than regions without permafrost, regardless of watershed glacial history, mean annual precipitation, and relief. We find evidence that advective fluvial processes are inhibited in permafrost landscapes compared to their temperate counterparts. Frozen soils likely inhibit channel development, and we predict that climate warming will lower incision thresholds to promote growth of the channel network in permafrost landscapes. By demonstrating how the balance of advective versus diffusive processes might shift with future warming, we gain insight into the mechanisms that shift these landscapes from sequestering to exporting carbon. 
    more » « less