skip to main content


Title: Enhanced North American ENSO Teleconnections During the Little Ice Age Revealed by Paleoclimate Data Assimilation
Abstract

Teleconnection rainfall over North America may be systematically altered by tropical Pacific mean state changes. Characterizing teleconnection changes to improve prediction requires many realizations of ENSO events, but twentieth century data are temporally limited. To extend twentieth century records, we evaluate ENSO events in a new last‐millennium paleoclimate data assimilation reconstruction to deduce how mean state changes affect the magnitude/extent of ENSO‐driven rainfall in the United States. Despite global cooling during the Little Ice Age, the central‐eastern tropical Pacific warms relative to the Medieval Climate Anomaly, shifting teleconnections eastward and increasing rainfall anomalies in the southwestern United States. Teleconnections strengthen independently of ENSO amplitude; we thus suggest caution in using paleoclimate reconstructions of teleconnection rainfall as a proxy for ENSO amplitude. We demonstrate teleconnection rainfall is sensitive to the pattern of tropical Pacific mean SST changes, underscoring the importance of reducing uncertainties in future warming patterns in the tropical Pacific.

 
more » « less
Award ID(s):
1805143
PAR ID:
10452379
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
15
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Large uncertainties exist in climate model projections of the Asian summer monsoon (ASM). The El Niño‐Southern Oscillation (ENSO) is an important modulator of the ASM, but the ENSO‐ASM teleconnection is not stationary. Furthermore, teleconnections between ENSO and the East Asian versus South Asian subcomponents of the ASM exhibit distinct characteristics. Therefore, understanding the variability of the ENSO‐ASM teleconnection is critical for anticipating future variations in ASM intensity. To this end, we here use paleoclimate records to extend temporal coverage beyond the instrumental era by millennia. Recently, data assimilation techniques have been applied for the last millennium, which facilitates physically consistent, globally gridded climate reconstructions informed by paleoclimate observations. We use these novel data assimilation products to investigate variations in the ENSO‐ASM relationship over the last 1,000 years. We find that correlations between ENSO and ASM indices are mostly negative in the last millennium, suggesting that strong ASM years are often associated with La Niña events. During periods of weak correlations between ENSO and the East Asian summer monsoon, we observe an El Niño‐like sea surface temperature (SST) pattern in the Pacific. Additionally, SST patterns associated with periods of weak correlations between ENSO and South Asian summer monsoon rainfall are not consistent among data assimilation products. This underscores the importance of developing more precipitation‐sensitive paleoclimate proxies in the Indian subcontinental realm over the last millennium. Our study serves as a baseline for future appraisals of paleoclimate assimilation products and an example of informing our understanding of decadal‐scale ENSO‐ASM teleconnection variability using paleoclimate data sets.

     
    more » « less
  2. Abstract

    The mean-state bias and the associated forecast errors of the El Niño–Southern Oscillation (ENSO) are investigated in a suite of 2-yr-lead retrospective forecasts conducted with the Community Earth System Model, version 1, for 1954–2015. The equatorial Pacific cold tongue in the forecasts is too strong and extends excessively westward due to a combination of the model’s inherent climatological bias, initialization imbalance, and errors in initial ocean data. The forecasts show a stronger cold tongue bias in the first year than that inherent to the model due to the imbalance between initial subsurface oceanic states and model dynamics. The cold tongue bias affects not only the pattern and amplitude but also the duration of ENSO in the forecasts by altering ocean–atmosphere feedbacks. The predicted sea surface temperature anomalies related to ENSO extend to the far western equatorial Pacific during boreal summer when the cold tongue bias is strong, and the predicted ENSO anomalies are too weak in the central-eastern equatorial Pacific. The forecast errors of pattern and amplitude subsequently lead to errors in ENSO phase transition by affecting the amplitude of the negative thermocline feedback in the equatorial Pacific and tropical interbasin adjustments during the mature phase of ENSO. These ENSO forecast errors further degrade the predictions of wintertime atmospheric teleconnections, land surface air temperature, and rainfall anomalies over the Northern Hemisphere. These mean-state and ENSO forecast biases are more pronounced in forecasts initialized in boreal spring–summer than other seasons due to the seasonal intensification of the Bjerknes feedback.

     
    more » « less
  3. Abstract

    The effects of differences in climate base state are related to processes associated with the present‐day South Asian monsoon simulations in the Energy Exascale Earth System Model version 2 (E3SMv2) and the Community Earth System Model version 2 (CESM2). Though tropical Pacific and Indian Ocean base state sea surface temperatures (SSTs) are over 1°C cooler in E3SMv2 compared to CESM2, and there is an overall reduction of Indian sector precipitation, the pattern of South Asian monsoon precipitation is similar in the two models. Monsoon‐ENSO teleconnections, dynamically linked by the large‐scale east‐west atmospheric circulation, are reduced in E3SMv2 compared to CESM2. In E3SMv2, this is related to cooler tropical SSTs and ENSO amplitude that is less than half that in CESM2. Comparison to a tropical Pacific pacemaker experiment shows, to a first order, that the base state SSTs and ENSO amplitude contribute roughly equally to lower amplitude monsoon‐ENSO teleconnections in E3SMv2.

     
    more » « less
  4. Abstract

    The teleconnection between tropical and extratropical climates in the North Pacific and continental regions of eastern Asia and western North America is known to vary on decadal to multidecadal time scales. In this study, the teleconnection pattern is studied with observational and reanalysis data products. The regional focus is set on the Hawaiian Islands in the central subtropical part of the North Pacific. By analysing correlations between regional climate indices and large‐scale climate modes during the years 1980 and 2014, it was found that the correlation between El Niño—Southern Oscillation (ENSO) and the synoptic weather activity over the Hawaiian Islands decreased over time. Composite analysis of the geopotential height anomalies and upper level winds suggest that the systematic shift in the North Pacific Jet (NPJ) position had an impact on the teleconnection between tropical Pacific SST and winter storm activity and precipitation variability in Hawai'i. The change in the correlations and in the NPJ structure coincides with a transition from the positive phase of the Pacific Decadal Oscillation (PDO) towards a neutral and weak negative state. This observation‐based study provides a central subtropical Pacific viewpoint in support of the growing body of research studies that have reported a major shift in the Pacific climate system during the mid‐1990s. The article further discusses the potential role of decadal‐scale changes in the North Pacific Oscillation (NPO) phase in changing the strength of the ENSO teleconnection with synoptic activity over the Hawaiian Islands. The results of this study are relevant to paleoclimate interpretation of individual proxy records as well as for regional downscaling of future rainfall for the Hawaiian Islands.

     
    more » « less
  5. Abstract

    Future changes in boreal winter MJO teleconnections over the Pacific–North America (PNA) region are examined in 15 Coupled Model Intercomparison Project phase 6 models (CMIP6s) under SSP585 (i.e., Shared Socioeconomic Pathway 5 following approximately the representative concentration pathway RCP8.5) scenarios. The most robust and significant change is an eastward extension (∼4° eastward for the multimodel mean) of MJO teleconnections in the North Pacific. Other projected changes in MJO teleconnections include a northward extension, more consistent patterns between different MJO events, stronger amplitude, and shorter persistence; however, these changes are more uncertain and less significant with a large intra- and intermodel spread. Mechanisms of the eastward teleconnection extension are investigated by comparing impacts of the future MJO and basic state changes on the anomalous Rossby wave source (RWS) and teleconnection pathways with a linear baroclinic model (LBM). The eastward extended jet in the future plays a more important role than the eastward-extended MJO in influencing the east–west position of MJO teleconnections. It leads to more eastward teleconnection propagation along the jet due to the eastward extension of turning latitudes before they propagate into North America. MJO teleconnections thus are positioned 2.9° more eastward in the North Pacific in the LBM. The eastward extended MJO, on the other hand, helps to generate a more eastward-extended RWS. However, negligible change is found in the east–west position of MJO teleconnections (only 0.3° more eastward in the LBM) excited from this RWS without the jet impacts. The above results suggest the dominant role of the jet change in influencing future MJO teleconnection position by altering their propagation pathways.

     
    more » « less