skip to main content

Title: Climate Model Teleconnection Patterns Govern the Niño-3.4 Response to Early Nineteenth-Century Volcanism in Coral-Based Data Assimilation Reconstructions
Abstract Scientific understanding of low-frequency tropical Pacific variability, especially responses to perturbations in radiative forcing, suffers from short observational records, sparse proxy networks, and bias in model simulations. Here, we combine the strengths of proxies and models through coral-based paleoclimate data assimilation. We combine coral archives ( δ 18 O, Sr/Ca) with the dynamics, spatial teleconnections, and intervariable relationships of the CMIP5/PMIP3 Past1000 experiments using the Last Millennium Reanalysis data assimilation framework. This analysis creates skillful reconstructions of tropical Pacific temperatures over the observational era. However, during the period of intense volcanism in the early nineteenth century, southwestern Pacific corals produce El Niño–Southern Oscillation (ENSO) reconstructions that are of opposite sign from those from eastern Pacific corals and tree ring records. We systematically evaluate the source of this discrepancy using 1) single-proxy experiments, 2) varied proxy system models (PSMs), and 3) diverse covariance patterns from the Past1000 simulations. We find that individual proxy records and coral PSMs do not significantly contribute to the discrepancy. However, following major eruptions, the southwestern Pacific corals locally record more persistent cold anomalies than found in the Past1000 experiments and canonical ENSO teleconnections to the southwest Pacific strongly control the reconstruction response. Furthermore, using covariance more » patterns independent of ENSO yields reconstructions consistent with coral archives across the Pacific. These results show that model bias can strongly affect how proxy information is processed in paleoclimate data assimilation. As we illustrate here, model bias influences the magnitude and persistence of the response of the tropical Pacific to volcanic eruptions. « less
Authors:
; ;
Award ID(s):
1702423
Publication Date:
NSF-PAR ID:
10297175
Journal Name:
Journal of Climate
Volume:
34
Issue:
5
Page Range or eLocation-ID:
1863 to 1880
ISSN:
0894-8755
Sponsoring Org:
National Science Foundation
More Like this
  1. The response of the hydrological cycle to anthropogenic climate change, especially across the tropical oceans, remains poorly understood due to the scarcity of long instrumental temperature and hydrological records. Massive shallow-water corals are ideally suited to reconstructing past oceanic variability as they are widely distributed across the tropics, rapidly deposit calcium carbonate skeletons that continuously record ambient environmental conditions, and can be sampled at monthly to annual resolution. Most coral-based reconstructions utilize stable oxygen isotope composition (δ18O) that tracks the combined change in sea surface temperature (SST) and the oxygen isotopic composition of seawater (δ18Osw), a measure of hydrologic variability. Increasingly, coral δ18O time series are paired with time series of strontium-to-calcium ratios (Sr / Ca), a proxy for SST, from the same coral to quantify temperature and δ18Osw variability through time. To increase the utility of such reconstructions, we present the CoralHydro2k database: a compilation of published, peer-reviewed coral Sr / Ca and δ18O records from the Common Era. The database contains 54 paired Sr / Ca-δ18O records and 125 unpaired Sr / Ca or δ18O records, with 88 % of these records providing data coverage from 1800 CE to present. A quality-controlled set of metadata with standardized vocabularymore »and units accompanies each record, informing the use of the database. The CoralHydro2k database tracks large-scale temperature and hydrological variability. As such, it is well-suited for investigations of past climate variability, comparisons with climate model simulations including isotope-enabled models – and application in paleo-data assimilation projects.The CoralHydro2k database will be available on the NOAA National Center for Environmental Information’s Paleoclimate data service with serializations in MATLAB, R, Python, and LiPD.« less
  2. Abstract We use theNorthern Hemisphere Tree-RingNetwork Development (NTREND) tree-ring database to examine the effects of using a small, highly-sensitive proxy network for paleotemperature data assimilation over the last millennium. We first evaluate our methods using pseudo-proxy experiments. These indicate that spatial assimilations using this network are skillful in the extratropical Northern Hemisphere and improve on previous NTREND reconstructions based on Point-by-Point regression. We also find our method is sensitive to climate model biases when the number of sites becomes small. Based on these experiments, we then assimilate the real NTREND network. To quantify model prior uncertainty, we produce 10 separate reconstructions, each assimilating a different climate model. These reconstructions are most dissimilar prior to 1100 CE, when the network becomes sparse, but show greater consistency as the network grows. Temporal variability is also underestimated before 1100 CE. Our assimilation method produces spatial uncertainty estimates and these identify treeline North America and eastern Siberia as regions that would most benefit from development of new millennial-length temperature-sensitive tree-ring records. We compare our multi-model mean reconstruction to five existing paleo-temperature products to examine the range of reconstructed responses to radiative forcing. We find substantial differences in the spatial patterns and magnitudes of reconstructedmore »responses to volcanic eruptions and in the transition between the Medieval epoch and Little Ice Age. These extant uncertainties call for the development of a paleoclimate reconstruction intercomparison framework for systematically examining the consequences of proxy network composition and reconstruction methodology and for continued expansion of tree-ring proxy networks.« less
  3. Abstract. Paleoclimate archives, such as high-resolution ice core records, provide ameans to investigate past climate variability. Until recently, the Law Dome(Dome Summit South site) ice core record remained one of fewmillennial-length high-resolution coastal records in East Antarctica. A newice core drilled in 2017/2018 at Mount Brown South, approximately 1000 kmwest of Law Dome, provides an additional high-resolution record that willlikely span the last millennium in the Indian Ocean sector of EastAntarctica. Here, we compare snow accumulation rates and sea saltconcentrations in the upper portion (∼ 20 m) of three MountBrown South ice cores and an updated Law Dome record over the period1975–2016. Annual sea salt concentrations from the Mount Brown South siterecord preserve a stronger signal for the El Niño–Southern Oscillation(ENSO; austral winter and spring, r = 0.533, p < 0.001, Multivariate El Niño Index) compared to a previously defined Law Dome record of summer sea salt concentrations (November–February, r = 0.398, p = 0.010, SouthernOscillation Index). The Mount Brown South site record and Law Dome recordpreserve inverse signals for the ENSO, possibly due to longitudinalvariability in meridional transport in the southern Indian Ocean, althoughfurther analysis is needed to confirm this. We suggest that ENSO-related seasurface temperature anomalies in the equatorial Pacific drive atmosphericteleconnections in the southern mid-latitudes. These anomalies areassociatedmore »with a weakening (strengthening) of regional westerly winds tothe north of Mount Brown South that correspond to years of low (high) seasalt deposition at Mount Brown South during La Niña (El Niño)events. The extended Mount Brown South annual sea salt record (whencomplete) may offer a new proxy record for reconstructions of the ENSO overthe recent millennium, along with improved understanding of regionalatmospheric variability in the southern Indian Ocean, in addition to thatderived from Law Dome.« less
  4. During International Ocean Discovery Program Expedition 371, we will core and log Paleogene and Neogene sediment sequences within the Tasman Sea. The cores will be analyzed for their sediment composition, microfossil components, mineral and water chemistry, and physical properties. The research will improve our understanding of how convergent plate boundaries form, how greenhouse climate systems work, and how and why global climate has evolved over the last 60 my. The most profound subduction initiation event and global plate-motion change since 80 Ma appears to have occurred in the early Eocene, when Tonga-Kermadec and Izu-Bonin-Mariana subduction initiation corresponded with a change in direction of the Pacific plate (Emperor-Hawaii bend) at ~50 Ma. The primary goal of Expedition 371 is to precisely date and quantify deformation and uplift/subsidence associated with Tonga-Kermadec subduction initiation in order to test predictions of alternate geodynamic models. This tectonic change may coincide with the pinnacle of Cenozoic “greenhouse” climate. However, paleoclimate proxy data from lower Eocene strata in the southwest Pacific show especially warm conditions, presenting a significant discrepancy with climate model simulations. The second goal is to determine if paleogeographic changes caused by subduction initiation may have led to anomalous regional warmth by altering ocean circulation.more »Late Neogene sediment cores will complement earlier drilling to investigate the third goal: tropical and polar climatic teleconnections. During Expedition 371, we will drill in a significant midlatitude transition zone influenced by both the Antarctic Circumpolar Current and the Eastern Australian Current. The accumulation of relatively thick carbonate-rich Neogene bathyal strata make this a good location for generating detailed paleoceanographic records from the Miocene through the Pleistocene that can be linked to previous ocean drilling expeditions in the region (Deep Sea Drilling Project Legs 21, 29, and 90; Ocean Drilling Program Leg 189) and elsewhere in the Pacific Ocean.« less
  5. Abstract. Reconstructions of past temperature and precipitation are fundamental to modeling the Greenland Ice Sheet and assessing its sensitivity to climate. Paleoclimate information is sourced from proxy records and climate-model simulations; however, the former are spatially incomplete while the latter are sensitive to model dynamics and boundary conditions. Efforts to combine these sources of information to reconstruct spatial patterns of Greenland climate over glacial–interglacial cycles have been limited by assumptions of fixed spatial patterns and a restricted use of proxy data. We avoid these limitations by using paleoclimate data assimilation to create independent reconstructions of mean-annual temperature and precipitation for the last 20 000 years. Our method uses oxygen isotope ratios of ice and accumulation rates from long ice-core records and extends this information to all locations across Greenland using spatial relationships derived from a transient climate-model simulation. Standard evaluation metrics for this method show that our results capture climate at locations without ice-core records. Our results differ from previous work in the reconstructed spatial pattern of temperature change during abrupt climate transitions; this indicates a need for additional proxy data and additional transient climate-model simulations. We investigate the relationship between precipitation and temperature, finding that it is frequency dependent and spatiallymore »variable, suggesting that thermodynamic scaling methods commonly used in ice-sheet modeling are overly simplistic. Our results demonstrate that paleoclimate data assimilation is a useful tool for reconstructing the spatial and temporal patterns of past climate on timescales relevant to ice sheets.« less