Abstract Teleconnection rainfall over North America may be systematically altered by tropical Pacific mean state changes. Characterizing teleconnection changes to improve prediction requires many realizations of ENSO events, but twentieth century data are temporally limited. To extend twentieth century records, we evaluate ENSO events in a new last‐millennium paleoclimate data assimilation reconstruction to deduce how mean state changes affect the magnitude/extent of ENSO‐driven rainfall in the United States. Despite global cooling during the Little Ice Age, the central‐eastern tropical Pacific warms relative to the Medieval Climate Anomaly, shifting teleconnections eastward and increasing rainfall anomalies in the southwestern United States. Teleconnections strengthen independently of ENSO amplitude; we thus suggest caution in using paleoclimate reconstructions of teleconnection rainfall as a proxy for ENSO amplitude. We demonstrate teleconnection rainfall is sensitive to the pattern of tropical Pacific mean SST changes, underscoring the importance of reducing uncertainties in future warming patterns in the tropical Pacific.
more »
« less
Climate Model Teleconnection Patterns Govern the Niño-3.4 Response to Early Nineteenth-Century Volcanism in Coral-Based Data Assimilation Reconstructions
Abstract Scientific understanding of low-frequency tropical Pacific variability, especially responses to perturbations in radiative forcing, suffers from short observational records, sparse proxy networks, and bias in model simulations. Here, we combine the strengths of proxies and models through coral-based paleoclimate data assimilation. We combine coral archives ( δ 18 O, Sr/Ca) with the dynamics, spatial teleconnections, and intervariable relationships of the CMIP5/PMIP3 Past1000 experiments using the Last Millennium Reanalysis data assimilation framework. This analysis creates skillful reconstructions of tropical Pacific temperatures over the observational era. However, during the period of intense volcanism in the early nineteenth century, southwestern Pacific corals produce El Niño–Southern Oscillation (ENSO) reconstructions that are of opposite sign from those from eastern Pacific corals and tree ring records. We systematically evaluate the source of this discrepancy using 1) single-proxy experiments, 2) varied proxy system models (PSMs), and 3) diverse covariance patterns from the Past1000 simulations. We find that individual proxy records and coral PSMs do not significantly contribute to the discrepancy. However, following major eruptions, the southwestern Pacific corals locally record more persistent cold anomalies than found in the Past1000 experiments and canonical ENSO teleconnections to the southwest Pacific strongly control the reconstruction response. Furthermore, using covariance patterns independent of ENSO yields reconstructions consistent with coral archives across the Pacific. These results show that model bias can strongly affect how proxy information is processed in paleoclimate data assimilation. As we illustrate here, model bias influences the magnitude and persistence of the response of the tropical Pacific to volcanic eruptions.
more »
« less
- Award ID(s):
- 1702423
- PAR ID:
- 10297175
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 34
- Issue:
- 5
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 1863 to 1880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The frequency and intensity of El Niño events reconstructed from 3 independent sedimentary sequencesContinuous archives of the El Niño Southern Oscillation (ENSO) spanning multiple millennia are rare, as few geologic records faithfully preserve evidence of sub-decadal climate variability over long timescales. Different proxy archive types –such as lake sediments, foraminifera, tree-rings, and corals—have their own unique sensitivities to the climate system and can thus be difficult to intercompare. The sedimentary sequence from Laguna Pallcacocha, Ecuador, represents one of the most widely cited Holocene-scale ENSO reconstructions. Hundreds of mineral-rich flood laminae result from eastern Pacific El Niño events, when convective rainstorms drive erosion and terrigenous sediment transport in the Laguna Pallcacocha watershed. This reconstruction, however, is tangibly different from other ENSO proxy records as well as flood stratigraphies from proximal lakes. The watersheds of these nearby lakes have markedly different landscape characteristics, suggesting that the intensity of storms which generate flood deposits differ between each watershed. Thus, an integrated analysis of these three separate records helps constrain the frequency of paleo-ENSO events of different magnitudes. While moderate El Niño events may have been most frequent approximately 1000 years BP, particularly intense El Niño’s occur more frequently during the subsequent Little Ice Age (1450-1850 CE), consistent with tree-ring based reconstructions of ENSO amplitude and foraminiferal records of high-intensity eastern Pacific warming. A widely reported minima in El Niño frequency between approximately 7-4 kyr BP is a prominent feature in Laguna Pallcacocha record. This minima is not present, however, in the high-intensity flood stratigraphies from the other two lakes, which align more closely with ENSO amplitude records derived from speleothems and corals. These findings highlight the value of integrating evidence from multiple paleoclimate archives in ENSO reconstructions.more » « less
-
Abstract Coral records of surface‐ocean conditions extend our knowledge of interannual El Niño–Southern Oscillation (ENSO) variability into the preinstrumental period. That said, the wide range of natural variability within the climate system as well as multiple sources of uncertainties inherent to the coral archive produce challenges for the paleoclimate community to detect forced changes in ENSO using coral geochemical records. We present a new coral proxy system model (PSM) of intermediate complexity, geared toward the evaluation of changes in interannual variance. Our coral PSM adds additional layers of complexity to previously published transfer functions of sensor models that describe how the archive responds to sea surface temperature (SST) and salinity. We use SST and salinity output from the Community Earth System Model Last Millennium Ensemble 850 control to model coral oxygen isotopic ratios and SST derived from Sr/Ca. We present a detailed analysis of our PSM using climate model output for sites in the central and southwest Pacific before extending the analyses to span the broader tropical Pacific. We demonstrate how variable growth rates, analytical and calibration errors, and age model assumptions systematically impact estimates of interannual variance and show that the relative magnitude of the change in interannual variance is location dependent. Importantly, however, we find that even with the added uncertainties in our PSM, corals from many circum‐Pacific locations are broadly able to capture decadal and longer (decadal+) changes in ENSO variability. Our code is publicly available on GitHub to facilitate future comparisons between model output and coral proxy data.more » « less
-
Abstract The Asian summer monsoon (ASM) is teleconnected to the El Niño Southern Oscillation (ENSO), but this relationship is nonstationary and has shifted significantly in recent decades. Characterizing the drivers of such shifts is crucial for improving ASM prediction and extreme event preparedness. Paleoclimate records indicate a link between ASM strength and solar activity on multidecadal‐to‐centennial timescales, but 20th‐century data are too short to test mechanisms. Here we evaluate how solar irradiance influences the ASM‐ENSO relationship using last‐millennium paleoclimate data assimilation reconstructions and model simulations. We find that high solar irradiance weakens the ENSO‐East Asian summer monsoon (EASM) correlation, but strengthens the ENSO‐South Asian summer monsoon (SASM) correlation. Solar irradiance likely influences the strength of the ENSO‐EASM and ENSO‐SASM teleconnections via changes in the Western Pacific Subtropical High and the amplitude of ENSO events, respectively. We suggest a need for considering solar activity in decadal ASM rainfall predictions under global warming scenarios.more » « less
-
Abstract Large uncertainties exist in climate model projections of the Asian summer monsoon (ASM). The El Niño‐Southern Oscillation (ENSO) is an important modulator of the ASM, but the ENSO‐ASM teleconnection is not stationary. Furthermore, teleconnections between ENSO and the East Asian versus South Asian subcomponents of the ASM exhibit distinct characteristics. Therefore, understanding the variability of the ENSO‐ASM teleconnection is critical for anticipating future variations in ASM intensity. To this end, we here use paleoclimate records to extend temporal coverage beyond the instrumental era by millennia. Recently, data assimilation techniques have been applied for the last millennium, which facilitates physically consistent, globally gridded climate reconstructions informed by paleoclimate observations. We use these novel data assimilation products to investigate variations in the ENSO‐ASM relationship over the last 1,000 years. We find that correlations between ENSO and ASM indices are mostly negative in the last millennium, suggesting that strong ASM years are often associated with La Niña events. During periods of weak correlations between ENSO and the East Asian summer monsoon, we observe an El Niño‐like sea surface temperature (SST) pattern in the Pacific. Additionally, SST patterns associated with periods of weak correlations between ENSO and South Asian summer monsoon rainfall are not consistent among data assimilation products. This underscores the importance of developing more precipitation‐sensitive paleoclimate proxies in the Indian subcontinental realm over the last millennium. Our study serves as a baseline for future appraisals of paleoclimate assimilation products and an example of informing our understanding of decadal‐scale ENSO‐ASM teleconnection variability using paleoclimate data sets.more » « less
An official website of the United States government

