Floral development is one of the model systems for investigating the mechanisms underlying organogenesis in plants. Floral organ identity is controlled by the well-known ABC model, which has been generalized to many flowering plants. Here, we report a previously uncharacterized MYB-like gene,
The regulation of floral organ identity was investigated using a forward genetic approach in five floral homeotic mutants of
- Award ID(s):
- 1911539
- PAR ID:
- 10452482
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Evolution & Development
- Volume:
- 23
- Issue:
- 3
- ISSN:
- 1520-541X
- Page Range / eLocation ID:
- p. 197-214
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
AGAMOUS-LIKE FLOWER (AGLF ), involved in flower development in the model legumeMedicago truncatula . Loss-of-function ofAGLF results in flowers with stamens and carpel transformed into extra whorls of petals and sepals. Compared with the loss-of-function mutant of the class C geneAGAMOUS (MtAG ) inM. truncatula , the defects in floral organ identity are similar betweenaglf andmtag , but the floral indeterminacy is enhanced in theaglf mutant. Knockout ofAGLF in the mutants of the class A geneMtAP1 or the class B geneMtPI leads to an addition of a loss-of-C-function phenotype, reflecting a conventional relationship ofAGLF with the canonical A and B genes. Furthermore, we demonstrate thatAGLF activatesMtAG in transcriptional levels in control of floral organ identity. These data shed light on the conserved and diverged molecular mechanisms that control flower development and morphology among plant species. -
Abstract The discovery of cancer driver mutations is a fundamental goal in cancer research. While many cancer driver mutations have been discovered in the protein-coding genome, research into potential cancer drivers in the non-coding regions showed limited success so far. Here, we present a novel comprehensive framework Dr.Nod for detection of non-coding cis-regulatory candidate driver mutations that are associated with dysregulated gene expression using tissue-matched enhancer-gene annotations. Applying the framework to data from over 1500 tumours across eight tissues revealed a 4.4-fold enrichment of candidate driver mutations in regulatory regions of known cancer driver genes. An overarching conclusion that emerges is that the non-coding driver mutations contribute to cancer by significantly altering transcription factor binding sites, leading to upregulation of tissue-matched oncogenes and down-regulation of tumour-suppressor genes. Interestingly, more than half of the detected cancer-promoting non-coding regulatory driver mutations are over 20 kb distant from the cancer-associated genes they regulate. Our results show the importance of tissue-matched enhancer-gene maps, functional impact of mutations, and complex background mutagenesis model for the prediction of non-coding regulatory drivers. In conclusion, our study demonstrates that non-coding mutations in enhancers play a previously underappreciated role in cancer and dysregulation of clinically relevant target genes.
-
Organ initiation from the shoot apical meristem first gives rise to leaves during vegetative development and then flowers during reproductive development.
LEAFY (LFY ) is activated after floral induction and together with other factors promotes the floral program. LFY functions redundantly with APETALA1 (AP1) to activate the class B genesAPETALA3 (AP3 ) andPISTILLATA (PI ), the class C geneAGAMOUS (AG ), and the class E geneSEPALLATA3 , which leads to the specification of stamens and carpels, the reproductive organs of flowers. Molecular and genetic networks that control the activation ofAP3, PI, andAG in flowers have been well studied; however, much less is known about how these genes are repressed in leaves and how their repression is lifted in flowers. Here, we showed that two genes encodingArabidopsis C2H2 ZINC FINGER PROTEIN (ZFP) transcription factors, ZP1 and ZFP8, act redundantly to directly repressAP3, PI, andAG in leaves. AfterLFY andAP1 are activated in floral meristems, they down-regulateZP1 andZFP8 directly to lift the repression onAP3, PI, andAG . Our results reveal a mechanism for how floral homeotic genes are repressed and derepressed before and after floral induction. -
Abstract Stem rust is an important disease of wheat that can be controlled using resistance genes. The gene
SuSr-D1 identified in cultivar ‘Canthatch’ suppresses stem rust resistance.SuSr-D1 mutants are resistant to several races of stem rust that are virulent on wild-type plants. Here we identifySuSr-D1 by sequencing flow-sorted chromosomes, mutagenesis, and map-based cloning. The gene encodes Med15, a subunit of the Mediator Complex, a conserved protein complex in eukaryotes that regulates expression of protein-coding genes. Nonsense mutations in Med15b.D result in expression of stem rust resistance. Time-course RNAseq analysis show a significant reduction or complete loss of differential gene expression at 24 h post inoculation inmed15b.D mutants, suggesting that transcriptional reprogramming at this time point is not required for immunity to stem rust. Suppression is a common phenomenon and this study provides novel insight into suppression of rust resistance in wheat. -
Abstract Plants consist of fundamental units of growth called phytomers (leaf or bract, axillary bud, node, and internode), which are repeated and modified throughout shoot development to give plants plasticity for survival and adaptation. One phytomer modification is the suppression or outgrowth of bracts, the leaves subtending the flowers. The floral meristem identity regulator LEAFY (LFY) and the organ boundary genes BLADE-ON-PETIOLE1 (BOP1) and BOP2 have been shown to suppress bract development in Arabidopsis, as mutations in these genes result in bract outgrowth. However, much less is known about the mechanisms that promote bract outgrowth in Arabidopsis mutants such as these. Further understanding of this mechanism may provide a potential tool for modifying leaf development. Here, we showed that the MADS-box genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), FRUITFUL (FUL), and AGAMOUS-LIKE24 (AGL24) play more important roles than BOP1/2 and LFY in bract suppression, and that AINTEGUMENTA (ANT) and the partially redundant AINTEGUMENTA-LIKE6 (AIL6) are necessary for bract outgrowth in these mutant backgrounds. We also demonstrated that misexpression of AIL6 alone is sufficient for bract outgrowth. Our data reveal a mechanism for bract suppression and outgrowth and provide insight into phytomer plasticity.