Single-molecule super-resolution imaging is instrumental in investigating cellular architecture and organization at the nanoscale. Achieving precise 3D nanometric localization when imaging structures throughout mammalian cells, which can be multiple microns thick, requires careful selection of the illumination scheme in order to optimize the fluorescence signal to background ratio (SBR). Thus, an optical platform that combines different wide-field illumination schemes for target-specific SBR optimization would facilitate more precise 3D nanoscale studies of a wide range of cellular structures. Here, we demonstrate a versatile multimodal illumination platform that integrates the sectioning and background reduction capabilities of light sheet illumination with homogeneous, flat-field epi- and TIRF illumination. Using primarily commercially available parts, we combine the fast and convenient switching between illumination modalities with point spread function engineering to enable 3D single-molecule super-resolution imaging throughout mammalian cells. For targets directly at the coverslip, the homogenous intensity profile and excellent sectioning of our flat-field TIRF illumination scheme improves single-molecule data quality by providing low fluorescence background and uniform fluorophore blinking kinetics, fluorescence signal, and localization precision across the entire field of view. The increased contrast achieved with LS illumination, when compared with epi-illumination, makes this illumination modality an excellent alternative when imaging targets that extend throughout the cell. We validate our microscopy platform for improved 3D super-resolution imaging by two-color imaging of paxillin – a protein located in the focal adhesion complex – and actin in human osteosarcoma cells.
more »
« less
Low‐photobleaching line‐scanning confocal microscopy using dual inclined beams
Abstract Confocal microscopy is an indispensable tool for biological imaging due to its high resolution and optical sectioning capability. However, its slow imaging speed and severe photobleaching have largely prevented further applications. Here, we present dual inclined beam line‐scanning (LS) confocal microscopy. The reduced excitation intensity of our imaging method enabled a 2‐fold longer observation time of fluorescence compared to traditional LS microscopy while maintaining a good sectioning capability and single‐molecule sensitivity. We characterized the performance of our method and applied it to subcellular imaging and three‐dimensional single‐molecule RNA imaging in mammalian cells.
more »
« less
- Award ID(s):
- 1805200
- PAR ID:
- 10452496
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Biophotonics
- Volume:
- 12
- Issue:
- 10
- ISSN:
- 1864-063X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Confocal microscopy is a standard approach for obtaining volumetric images of a sample with high axial and lateral resolution, especially when dealing with scattering samples. Unfortunately, a confocal microscope is quite expensive compared to traditional microscopes. In addition, the point scanning in confocal microscopy leads to slow imaging speed and photobleaching due to the high dose of laser energy. In this paper, we demonstrate how the advances in machine learning can be exploited to teach a traditional wide-field microscope, one that’s available in every lab, into producing 3D volumetric images like a confocal microscope. The key idea is to obtain multiple images with different focus settings using a wide-field microscope and use a 3D generative adversarial network (GAN) based neural network to learn the mapping between the blurry low-contrast image stacks obtained using a wide-field microscope and the sharp, high-contrast image stacks obtained using a confocal microscope. After training the network with widefield-confocal stack pairs, the network can reliably and accurately reconstruct 3D volumetric images that rival confocal images in terms of its lateral resolution, z-sectioning and image contrast. Our experimental results demonstrate generalization ability to handle unseen data, stability in the reconstruction results, high spatial resolution even when imaging thick (∼40 microns) highly-scattering samples. We believe that such learning-based microscopes have the potential to bring confocal imaging quality to every lab that has a wide-field microscope.more » « less
-
Optical sectioning structured illumination microscopy (OS-SIM) provides optical sectioning capability in wide-field microscopy. The required illumination patterns have traditionally been generated using spatial light modulators (SLM), laser interference patterns, or digital micromirror devices (DMDs) which are too complex to implement in miniscope systems. MicroLEDs have emerged as an alternative light source for patterned illumination due to their extreme brightness capability and small emitter sizes. This paper presents a directly addressable striped microLED microdisplay with 100 rows on a flexible cable (70 cm long) for use as an OS-SIM light source in a benchtop setup. The overall design of the microdisplay is described in detail with luminance-current-voltage characterization. OS-SIM implementation with a benchtop setup shows the optical sectioning capability of the system by imaging within a 500 µm thick fixed brain slice from a transgenic mouse where oligodendrocytes are labeled with a green fluorescent protein (GFP). Results show improved contrast in reconstructed optically sectioned images of 86.92% (OS-SIM) compared with 44.31% (pseudo-widefield). MicroLED based OS-SIM therefore offers a new capability for deep tissue widefield imaging.more » « less
-
Abstract Whole slide imaging (WSI) has moved digital pathology closer to diagnostic practice in recent years. Due to the inherent tissue topography variability, accurate autofocusing remains a critical challenge for WSI and automated microscopy systems. The traditional focus map surveying method is limited in its ability to acquire a high degree of focus points while still maintaining high throughput. Real‐time approaches decouple image acquisition from focusing, thus allowing for rapid scanning while maintaining continuous accurate focus. This work reviews the traditional focus map approach and discusses the choice of focus measure for focal plane determination. It also discusses various real‐time autofocusing approaches including reflective‐based triangulation, confocal pinhole detection, low‐coherence interferometry, tilted sensor approach, independent dual sensor scanning, beam splitter array, phase detection, dual‐LED illumination and deep‐learning approaches. The technical concepts, merits and limitations of these methods are explained and compared to those of a traditional WSI system. This review may provide new insights for the development of high‐throughput automated microscopy imaging systems that can be made broadly available and utilizable without loss of capacity.more » « less
-
We demonstrate hyperspectral confocal microscopy in the short-wave infrared (SWIR) range of 1100–1600 nm using a wavelength-scanning laser in tandem with laser scanning confocal microscopy. Confocal microscopy in the SWIR range allows for high-resolution inspection of an integrated circuit (IC) chip, while hyperspectral imaging, together with a chemometric analysis, enables us to identify functional circuit block groups in the acquired image. With the extended capability, the developed instrument can be potentially used for inline inspection and non-invasive failure analysis of IC chips.more » « less
An official website of the United States government
