Abstract Coupled groundwater flow and heat transport within hyporheic zones extensively affect water, energy, and solute exchange with surrounding sediments. The local and cumulative implications of this tightly coupled process strongly depend on characteristics of drivers (i.e., discharge and temperature of the water column) and modulators (i.e., hydraulic and thermal properties of the sediment). With this in mind, we perform a systematic numerical analysis of hyporheic responses to understand how the temporal variability of river discharge and temperature affect flow and heat transport within hyporheic zones. We identify typical time series of river discharge and temperature from gauging stations along the headwater region of Mississippi River Basin, which are characterized by different degrees of flow alteration, to drive a physics‐based model of the hyporheic exchange process. Our modeling results indicate that coupled groundwater flow and heat transport significantly affects the dynamic response of hyporheic zones, resulting in substantial differences in exchange rates and characteristic time scales of hyporheic exchange processes. We also find that the hyporheic zone dampens river temperature fluctuations increasingly with higher frequency of temperature fluctuations. This dampening effect depends on the system transport time scale and characteristics of river discharge and temperature variability. Furthermore, our results reveal that the flow alteration reduces the potential of hyporheic zones to act as a temperature buffer and hinders denitrification within hyporheic zones. These results have significant implications for understanding the drivers of local variability in hyporheic exchange and the implications for the development of thermal refugia and ecosystem functioning in hyporheic zones.
more »
« less
Spatiotemporal Variability in Transport and Reactive Processes Across a First‐ to Fifth‐Order Fluvial Network
Abstract Fluvial networks integrate, transform, and transport constituents from terrestrial and aquatic ecosystems. To date, most research on water quality dynamics has focused on process understanding at individual streams, and, as a result, there is a lack of studies analyzing how physical and biogeochemical drivers scale across fluvial networks. We performed tracer tests in five stream orders of the Jemez River continuum in New Mexico, USA, to quantify reach‐scale hyporheic exchange during two different seasonal periods to address the following: How do hyporheic zone contributions to overall riverine processing change with space and time? And does the spatiotemporal variability of hyporheic exchange scale across fluvial networks? Combining conservative (i.e., bromide) and reactive (i.e., resazurin) tracer analyses with solute transport modeling, we found a dominance of reaction‐limited transport conditions and a decrease of the contributions of hyporheic processing across stream orders and flow regimes. Our field‐based findings suggest that achieving knowledge transferability of hyporheic processing within fluvial networks may be possible, especially when process variability is sampled across multiple stream orders and flow regimes. Therefore, we propose a shift in our traditional approach to investigating scaling patterns in transport processes, which currently relies on the interpretation of studies conducted in multiple sites (mainly in headwater streams) that are located in different fluvial networks, to a more cohesive, network‐centered investigation of processes using the same or readily comparable methods.
more »
« less
- PAR ID:
- 10452507
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 56
- Issue:
- 5
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Assessments of riverine ecosystem health and water quality require knowledge of how headwater streams transport and transform nutrients. Estimates of nutrient demand at the watershed scale are commonly inferred from reach‐scale solute injections, which are typically reported as uptake velocities (vf). Multiple interacting processes controlvf, making it challenging to predict howvfresponds to physical changes in the stream. In this study, we linkvfto a continuous time random walk model to quantify howvfis controlled by in‐stream (velocity, dispersion, and benthic reaction) and hyporheic processes (exchange rate, residence times, and hyporheic reaction). We fit the model to conservative (NaCl) and nitrate (NO3−‐N) pulse tracer injections in unshaded replicate streams at the Notre Dame Linked Experimental Ecosystem Facility, which differed only in substrate size and distribution. Experiments were conducted over the first 25 days of biofilm colonization to examine how the interaction between substrate type and biofilm growth influenced modeled processes andvf. Model fits of benthic reaction rates were ∼8× greater than hyporheic reaction rates for all experiments and did not vary with substrate type or over time. High benthic reactivity was associated with filamentous green algae coverage on the streambed, which dominated total algal biomass. Finally,vfwas most sensitive to benthic reaction rate and stream velocity, and sensitivity varied with stream conditions due to its nonlinear dependence on all modeled processes. Together, these results demonstrate how reach‐scale nutrient demand reflects the relative contributions of biotic and abiotic processes in the benthic layer and the hyporheic zone.more » « less
-
Abstract In streams where water temperatures stress native biota, management of riparian shade or hyporheic exchange are both considered viable management strategies for reducing the peaks of daily and seasonal stream channel temperature cycles. Although shade and hyporheic exchange may have similar effects on stream temperatures, their mechanisms differ. Improved understanding of the heat‐exchange mechanisms influenced by shade and hyporheic exchange will aid in the appropriate application of either stream temperature management strategy. To illustrate a conceptual model highlighting shade as ‘thermal insulation’ and hyporheic exchange imparting ‘thermal capacitance’ to a stream reach, we conducted an in‐silico simulation modelling experiment increasing shade or hyporheic exchange parameters on an idealized, hypothetical stream. We assessed the potential effects of increasing shade or hyporheic exchange on a stream reach using an established process‐based heat‐energy budget model of stream‐atmosphere heat exchange and incorporated an advection‐driven hyporheic heat exchange routine. The model tracked heat transport through the hyporheic zone and exchange with the stream channel, while including the effects of hyporheic water age distribution on upwelling hyporheic temperatures. Results showed that shade and hyporheic exchange similarly damped diurnal temperature cycles and differentially altered seasonal cycles of our theoretical stream. In winter, hyporheic exchange warmed simulated channel temperatures whereas shade had little effect. In summer, both shade and hyporheic exchange cooled channel temperatures, though the effects of shade were more pronounced. Our simple‐to‐grasp analogies of ‘thermal insulation’ for shade effects and ‘thermal capacitance’ for hyporheic exchange effects on stream temperature encourage more accurate conceptualization of complex, dynamic heat exchange processes among the atmosphere, stream channel, and alluvial aquifer.more » « less
-
Abstract Land use within a watershed impacts stream channel morphology and hydrology and, therefore, in‐stream solute transport processes and associated transient storage mechanisms. This study evaluated transport processes in two contrasting stream sites where channel morphology was influenced by the surrounding land use, land cover, climate and geologic controls: Como Creek, CO, a relatively undisturbed, high gradient, forested stream with a gravel bed and complex channel morphology, and Clear Creek, IA, an incised, low‐gradient stream with low‐permeability substrate draining an agricultural landscape. We performed conservative stream tracer injections at these sites to address the following questions: (1) How does solute transport vary between streams with differing morphologies? and (2) How does solute transport at each stream site change as a function of discharge? We analysed in‐stream tracer time series data and compared results quantifying solute attenuation in surface and subsurface transient storage zones. Significant trends were observed in these metrics with varying discharge conditions at the forested site but not at the agricultural site. There was a broad range of transport mechanisms and evidence of substantial exchange with both surface and hyporheic transient storage in the relatively undisturbed, forested stream. Changing discharge conditions activated or deactivated different solute transport mechanisms in the forested site and greatly impacted advective travel time. Conversely in the simplified agricultural stream, there was a narrow range of solute transport behaviour across flows and predominantly surface transient storage at all measured discharge conditions. These results demonstrate how channel simplification inhibits available solute transport mechanisms across varying discharge conditions.more » « less
-
Abstract Inland waters are an important component of the global carbon budget. However, our ability to predict carbon fluxes from stream systems remains uncertain, aspCO2varies within streams at scales of 1–100 m. This makes direct monitoring of large‐scale CO2fluxes impractical. We incorporate CO2input and output fluxes into a stream network advection‐reaction model, representing the first process‐based representation of stream CO2dynamics at watershed scales. This model includes groundwater (GW) CO2inputs, water column (WC), benthic hyporheic zone (BHZ) respiration, downstream advection, and atmospheric exchange. We evaluate this model against existing statistical methods including upscaling and multiple linear regressions through comparisons to high‐resolution streampCO2data collected across the East River Watershed in the Colorado Rocky Mountains (USA). The stream network model accurately captures GW, evasion, and respiration‐drivenpCO2variability and significantly outperforms multiple linear regressions for predictingpCO2. Further, the model provides estimates of CO2contributions from internal versus external sources suggesting that streams transition from GW‐ to BHZ‐dominated sources between 3rd and 4th Strahler orders, with GW, BHZ, and WC accounting for 49.3%, 50.6%, and 0.1% of CO2fluxes from the watershed, respectively. Lastly, stream network model atmospheric CO2fluxes are 4‐12x times smaller than upscaling technique predictions, largely due to relationships between streampCO2and gas exchange velocities. Taken together, this stream network model improves our ability to predict stream CO2dynamics and efflux. Furthermore, future applications to regional and global scales may result in a significant downward revision of global flux estimates.more » « less