skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The geographic mosaic in parallel: Matching patterns of newt tetrodotoxin levels and snake resistance in multiple predator–prey pairs
Abstract The Geographic Mosaic Theory of Coevolution predicts that coevolutionary arms races will vary over time and space because of the diverse ecological settings and population histories of interacting species across the landscape. Thus, understanding coevolution may require investigating broad sets of populations sampled across the range of the interaction. In addition, comparing coevolutionary dynamics between similar systems may reveal the importance of specific factors that structure coevolution.Here, we examine geographic patterns of prey traits and predator traits in the relatively unstudied interaction between the Sierra garter snake (Thamnophis couchii) and sympatric prey, the rough‐skinned newt (Taricha granulosa), Sierra newt (Ta. sierrae) and California newt (Ta. torosa). This system parallels, in space and phenotypes, a classic example of coevolution between predatory common garter snakes (Th. sirtalis) and their toxic newt prey exhibiting hotspots of newt tetrodotoxin (TTX) levels and matching snake TTX resistance.We quantified prey and predator traits from hundreds of individuals across their distributions, and functional trait matching at sympatric sites.We show strong regional patterns of trait covariation across the shared ranges ofTh. couchiiand newt prey. Traits differ significantly among localities, with lower newt TTX levels and snake TTX resistance at the northern latitudes, and higher TTX levels and snake resistance at southern latitudes. Newts and snakes in northern populations show the highest degree of functional trait matching despite possessing the least extreme traits. Conversely, newts and snakes in southern populations show the greatest mismatch despite possessing exaggerated traits, with some snakes so resistant to TTX they would be unaffected by any sympatric newt. Nevertheless, individual variation was substantial, and appears to offer the opportunity for continued reciprocal selection in most populations.Overall, the three species of newts appear to be engaged in a TTX‐mediated arms race withTh. couchii. These patterns are congruent with those seen between newts andTh. sirtalis, including the same latitudinal gradient in trait covariation, and the potential ‘escape’ from the arms race by snake predators. Such concordance in broad scale patterns across two distinct systems suggests common phenomena might structure geographic mosaics in similar ways.  more » « less
Award ID(s):
1911485
PAR ID:
10452511
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
89
Issue:
7
ISSN:
0021-8790
Page Range / eLocation ID:
p. 1645-1657
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Antagonistic coevolution between natural enemies can produce highly exaggerated traits, such as prey toxins and predator resistance. This reciprocal process of adaptation and counter‐adaptation may also open doors to other evolutionary novelties not directly involved in the phenotypic interface of coevolution. We tested the hypothesis that predator–prey coevolution coincided with the evolution of conspicuous coloration on resistant predators that retain prey toxins. In western North America, common garter snakes (Thamnophis sirtalis) have evolved extreme resistance to tetrodotoxin (TTX) in the coevolutionary arms race with their deadly prey, Pacific newts (Tarichaspp.). TTX‐resistant snakes can retain large amounts of ingested TTX, which could serve as a deterrent against the snakes' own predators if TTX toxicity and resistance are coupled with a conspicuous warning signal. We evaluated whether arms race escalation covaries with bright red coloration in snake populations across the geographic mosaic of coevolution. Snake colour variation departs from the neutral expectations of population genetic structure and covaries with escalating clines of newt TTX and snake resistance at two coevolutionary hotspots. In the Pacific Northwest, bright red coloration fits an expected pattern of an aposematic warning to avian predators: TTX‐resistant snakes that consume highly toxic newts also have relatively large, reddish‐orange dorsal blotches. Snake coloration also seems to have evolved with the arms race in California, but overall patterns are less intuitively consistent with aposematism. These results suggest that interactions with additional trophic levels can generate novel traits as a cascading consequence of arms race coevolution across the geographic mosaic. 
    more » « less
  2. Abstract Reciprocal adaptation is the hallmark of arms race coevolution. Local coadaptation between natural enemies should generate a geographic mosaic pattern where both species have roughly matched abilities across their shared range. However, mosaic variation in ecologically relevant traits can also arise from processes unrelated to reciprocal selection, such as population structure or local environmental conditions. We tested whether these alternative processes can account for trait variation in the geographic mosaic of arms race coevolution between resistant garter snakes (Thamnophis sirtalis) and toxic newts (Taricha granulosa). We found that predator resistance and prey toxin levels are functionally matched in co-occurring populations, suggesting that mosaic variation in the armaments of both species results from the local pressures of reciprocal selection. By the same token, phenotypic and genetic variation in snake resistance deviates from neutral expectations of population genetic differentiation, showing a clear signature of adaptation to local toxin levels in newts. Contrastingly, newt toxin levels are best predicted by genetic differentiation among newt populations, and to a lesser extent, by the local environment and snake resistance. Exaggerated armaments suggest that coevolution occurs in certain hotspots, but prey population structure seems to be of particular influence on local phenotypic variation in both species throughout the geographic mosaic. Our results imply that processes other than reciprocal selection, like historical biogeography and environmental pressures, represent an important source of variation in the geographic mosaic of coevolution. Such a pattern supports the role of “trait remixing” in the geographic mosaic theory, the process by which non-adaptive forces dictate spatial variation in the interactions among species. 
    more » « less
  3. Rough-skinned newts produce tetrodotoxin or TTX, a deadly neurotoxin that is also present in some pufferfish, octopuses, crabs, starfish, flatworms, frogs, and toads. It remains a mystery why so many different creatures produce this toxin. One possibility is that TTX did not evolve in animals at all, but rather it is made by bacteria living on or in these creatures. In fact, scientists have already shown that TTX-producing bacteria supply pufferfish, octopus, and other animals with the toxin. However, it was not known where TTX in newts and other amphibians comes from. TTX kills animals by blocking specialized ion channels and shutting down the signaling between neurons, but rough-skinned newts appear insensitive to this blockage, making it likely that they have evolved defenses against the toxin. Some garter snakes that feed on these newts have also evolved to become immune to the effects of TTX. If bacteria are the source of TTX in the newts, the emergence of newt-eating snakes resistant to TTX must be putting evolutionary pressure on both the newts and the bacteria to boost their anti-snake defenses. Learning more about these complex relationships will help scientists better understand both evolution and the role of beneficial bacteria. Vaelli et al. have now shown that bacteria living on rough-skinned newts produce TTX. In the experiments, bacteria samples were collected from the skin of the newts and grown in the laboratory. Four different types of bacteria from the samples collected produced TTX. Next, Vaelli et al. looked at five genes that encode the channels normally affected by TTX in newts and found that all them have mutations that prevent them from being blocked by this deadly neurotoxin. This suggests that bacteria living on newts shape the evolution of genes critical to the animals’ own survival. Helpful bacteria living on and in animals have important effects on animals’ physiology, health, and disease. But understanding these complex interactions is challenging. Rough-skinned newts provide an excellent model system for studying the effects of helpful bacteria living on animals. Vaelli et al. show that a single chemical produced by bacteria can impact diverse aspects of animal biology including physiology, the evolution of their genes, and their interactions with other creatures in their environment. 
    more » « less
  4. A diverse metabolome exists on amphibian skin that mediates interactions between hosts and skin microbiomes. Tetrodotoxin is one such metabolite that occurs across a variety of taxa, and is particularly well studied in newts of the genusTarichathat are susceptible to infection with chytrid fungi. The interaction of tetrodotoxin with the skin microbiome, including pathogenic fungi, is not well understood, and here we describe these patterns across 12 populations ofTaricha granulosaandT. torosain Washington, Oregon, and California. We found no correlation of TTX andBatrachochytrium dendrobatidis(Bd) infection in eitherT. granulosaorT. torosa, a pattern inconsistent with a previous study. In addition, TTX, but not Bd, was significantly correlated with the skin microbiome composition inT. granulosa. InT. torosa, however, Bd, but not TTX, was correlated with the skin microbiome structure. The relationship between TTX and skin microbiome composition differed between species, with significant correlations observed only inT. granulosa, which exhibited higher TTX concentrations. We also detected significantly higher abundances of bacterial taxa (e.g., Pseudomonadaceae) associated with TTX production in newts with higher skin TTX. These taxa (ASVs matchingAeromonas, Pseudomonas, Shewanella, andSphingopyxis) were associated with all body sites of previously sampledT. granulosa, but not found in soil samples. Our results suggest that toxins can shape the newt skin microbiome and may influence pathogen infection through indirect mechanisms, as TTX showed no direct inhibition of Bd orB. salamandrivoransgrowth. 
    more » « less
  5. Abstract Predator and prey traits are important determinants of the outcomes of trophic interactions. In turn, the outcomes of trophic interactions shape predator and prey trait evolution. How species' traits respond to selection from trophic interactions depends crucially on whether and how heritable species' traits are and their genetic correlations. Of the many traits influencing the outcomes of trophic interactions, body size and movement traits have emerged as key traits. Yet, how these traits shape and are shaped by trophic interactions is unclear, as few studies have simultaneously measured the impacts of these traits on the outcomes of trophic interactions, their heritability, and their correlations within the same system.We used outcrossed lines of the ciliate protistParamecium caudatumfrom natural populations to examine variation in morphology and movement behaviour, the heritability of that variation, and its effects onParameciumsusceptibility to predation by the copepodMacrocyclops albidus.We found that theParameciumlines exhibited heritable variation in body size and movement traits. In contrast to expectations from allometric relationships, body size and movement speed showed little covariance among clonal lines. The proportion ofParameciumconsumed by copepods was positively associated withParameciumbody size and velocity but with an interaction such that greater velocities led to greater predation risk for large body‐sized paramecia but did not alter predation risk for smaller paramecia. The proportion of paramecia consumed was not related to copepod body size. These patterns of predation risk and heritable trait variation in paramecia suggest that copepod predation may act as a selective force operating independently on movement and body size and generating the strongest selection against large, high‐velocity paramecia.Our results illustrate how ecology and genetics can shape potential natural selection on prey traits through the outcomes of trophic interactions. Further simultaneous measures of predation outcomes, traits, and their quantitative genetics will provide insights into the evolutionary ecology of species interactions and their eco‐evolutionary consequences. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less