skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrated dielectrophoretic and impedimetric biosensor provides a template for universal biomarker sensing in clinical samples
Abstract The detection and quantification of nucleic acid and proteomic biomarkers in bodily fluids is a critical part of many medical screening and diagnoses. However, majority of the current detection platforms are not ideal for routine, rapid, and low‐cost testing in point‐of‐care settings. To address this issue, we developed a concept for a disposable universal point‐of‐care biosensor that can detect and quantify nucleic acid and proteomic biomarkers in diluted serum samples. The central tenet of sensing is the use of dielectrophoresis, electrothermal effects, and thermophoresis to selectively and rapidly isolate the biomarkers of interest in electrodes and then quantify using electrical impedance. When the sensor was applied to quantify microRNA and antigen biomarker molecules directly in diluted serum samples, it produced a LOD values in the fM range and sensitivity values from 1012to 1015Ω/M with a 30 min assay time and assay cost of less than $50 per assay.  more » « less
Award ID(s):
1941748
PAR ID:
10452542
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ELECTROPHORESIS
Volume:
42
Issue:
9-10
ISSN:
0173-0835
Format(s):
Medium: X Size: p. 1060-1069
Size(s):
p. 1060-1069
Sponsoring Org:
National Science Foundation
More Like this
  1. Low-cost, highly-sensitivity, and minimally invasive tests for the detection and monitoring of life-threatening diseases and disorders can reduce the worldwide disease burden. Despite a number of interdisciplinary research efforts, there are still challenges remaining to be addressed, so clinically significant amounts of relevant biomarkers in body fluids can be detected with low assay cost, high sensitivity, and speed at point-of-care settings. Although the conventional proteomic technologies have shown promise, their ability to detect all levels of disease progression from early to advanced stages is limited to a limited number of diseases. One potential avenue for early diagnosis is microRNA (miRNA). Due to their upstream positions in regulatory cascades, blood-based miRNAs are sensitive biomarkers that are detectable earlier than those targeted by other methods. Therefore, miRNA is a promising diagnostic biomarker for many diseases, including those lacking optimal diagnostic tools. Electric fields have been utilized to develop various biomedical assays including cell separation, molecules detection and analysis. Recently, there has been a great interest in the utility of electric fields with optical detection methods, including fluorescence and surface plasmons toward biomarker detection. This mini review first summarizes the recent development of miRNA as a biomarker. Second, the utility of electric fields and their integration with fluorescence detection methods will be discussed. Next, recent studies that utilized electric fields and optical detection methods will be discussed. Finally, in conclusion, technology gaps and improvements needed to enable low-cost and sensitive biomarker detection in point-of-care settings will be discussed. 
    more » « less
  2. Abstract Extracellular vesicles (EVs) – nanoscale membranous particles that carry multiple proteins and nucleic acid cargoes from their mother cells of origin into circulation – have enormous potential as biomarkers. However, devices appropriately scaled to the nanoscale to match the size of EVs (30–200 nm) have orders of magnitude too low throughput to process clinical samples (1012EVs mL−1in serum). To address this challenge, we develop a novel approach that incorporates billions of nanomagnetic sorters that act in parallel to precisely isolate sparse EVs based on immunomagnetic labeling directly from clinical samples at flow rates billions of times greater than that of a single nanofluidic device. To fabricate these chips, the ferromagnetic metals are electro‐deposited into a self‐assembled microlattice, achieving >109nanoscale magnetophoretic sorting devices in a 3D postage stamp‐sized lattice with >70x magnetic traps and >20x enrichment of magnetic nanoparticles versus our previous work. The immunomagnetically labeled EVs are isolated and achieve a ≈100% increase in yield as well as increased purity compared to conventional methods. Building on the proof‐of‐concept demonstrations in this manuscript, this new approach has the potential to enhance the future clinical translation of EV biomarkers by enabling rapid, sensitive, and specific isolation of EV subpopulations from clinical samples. 
    more » « less
  3. null (Ed.)
    Abstract Digital protein assays have great potential to advance immunodiagnostics because of their single-molecule sensitivity, high precision, and robust measurements. However, translating digital protein assays to acute clinical care has been challenging because it requires deployment of these assays with a rapid turnaround. Herein, we present a technology platform for ultrafast digital protein biomarker detection by using single-molecule counting of immune-complex formation events at an early, pre-equilibrium state. This method, which we term “pre-equilibrium digital enzyme-linked immunosorbent assay” (PEdELISA), can quantify a multiplexed panel of protein biomarkers in 10 µL of serum within an unprecedented assay incubation time of 15 to 300 seconds over a 104 dynamic range. PEdELISA allowed us to perform rapid monitoring of protein biomarkers in patients manifesting post-chimeric antigen receptor T-cell therapy cytokine release syndrome, with ∼30-minute sample-to-answer time and a sub–picograms per mL limit of detection. The rapid, sensitive, and low-input volume biomarker quantification enabled by PEdELISA is broadly applicable to timely monitoring of acute disease, potentially enabling more personalized treatment. 
    more » « less
  4. To sensitively detect multiple and cross-species disease-related targets from a single biological sample in a quick and reliable manner is of high importance in accurately diagnosing and monitoring diseases. Herein, a surface-enhanced Raman scattering (SERS) sensor based on a functionalized multiple-armed tetrahedral DNA nanostructure (FMTDN) immobilized silver nanorod (AgNR) array substrate and Au nanoparticle (AuNP) SERS tags is constructed to achieve both multiplex detection and enhanced sensitivity using a sandwich strategy. The sensor can achieve single, dual, and triple biomarker detections of three lung cancer-related nucleic acid and protein biomarkers, i.e. , miRNA-21, miRNA-486 and carcinoembryonic antigen (CEA) in human serum. The enhanced SERS signals in multiplex detections are due to the DNA self-assembled AuNP clusters on the silver nanorod array during the assay, and the experimentally obtained relative enhancement factor ratios, 150 for AuNP dimers and 840 for AuNP trimers, qualitatively agree with the numerically calculated local electric field enhancements. The proposed FMTDN-functionalized AgNR SERS sensor is capable of multiplex and cross-species detection of nucleic acid and protein biomarkers with improved sensitivity, which has great potential for the screening and clinical diagnosis of cancer in the early stage. 
    more » « less
  5. Rapid, simple, inexpensive, accurate, and sensitive point-of-care (POC) detection of viral pathogens in bodily fluids is a vital component of controlling the spread of infectious diseases. The predominant laboratory-based methods for sample processing and nucleic acid detection face limitations that prevent them from gaining wide adoption for POC applications in low-resource settings and self-testing scenarios. Here, we report the design and characterization of an integrated system for rapid sample-to-answer detection of a viral pathogen in a droplet of whole blood comprised of a 2-stage microfluidic cartridge for sample processing and nucleic acid amplification, and a clip-on detection instrument that interfaces with the image sensor of a smartphone. The cartridge is designed to release viral RNA from Zika virus in whole blood using chemical lysis, followed by mixing with the assay buffer for performing reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) reactions in six parallel microfluidic compartments. The battery-powered handheld detection instrument uniformly heats the compartments from below, and an array of LEDs illuminates from above, while the generation of fluorescent reporters in the compartments is kinetically monitored by collecting a series of smartphone images. We characterize the assay time and detection limits for detecting Zika RNA and gamma ray-deactivated Zika virus spiked into buffer and whole blood and compare the performance of the same assay when conducted in conventional PCR tubes. Our approach for kinetic monitoring of the fluorescence-generating process in the microfluidic compartments enables spatial analysis of early fluorescent “bloom” events for positive samples, in an approach called “Spatial LAMP” (S-LAMP). We show that S-LAMP image analysis reduces the time required to designate an assay as a positive test, compared to conventional analysis of the average fluorescent intensity of the entire compartment. S-LAMP enables the RT-LAMP process to be as short as 22 minutes, resulting in a total sample-to-answer time in the range of 17–32 minutes to distinguish positive from negative samples, while demonstrating a viral RNA detection as low as 2.70 × 10 2 copies per μl, and a gamma-irradiated virus of 10 3 virus particles in a single 12.5 μl droplet blood sample. 
    more » « less