skip to main content


Title: Effects of plant hydraulic traits on the flammability of live fine canopy fuels
Abstract

Plant species vary in how they regulate moisture and this has implications for their flammability during wildfires. We explored how fuel moisture is shaped by variation within five hydraulic traits: saturated moisture content, cell wall rigidity, cell solute potential, symplastic water fraction and tissue capacitance.

Using pressure–volume curves, we measured these hydraulic traits in twigs and distal shoots (i.e. twigs + leaves) in 62 plant species across four wooded communities in south‐eastern Australia. Moisture content of fine fuels was then estimated for circumstances typical of fire weather. These projections were made assuming that under the hot, dry, windy conditions typical of large wildfires, leaves and fine twigs would function at internal water pressures close to wilting point (i.e. turgor loss point, TLP). The effect of different moisture contents at TLP on ignition time was then modelled using a fully mechanistic, finite element model of biomass ignition based on standard principles of physical chemistry.

We also measured predawn water potential, an indication of plant access to soil water that is influenced by root architecture. These data were used to model how root traits influence fuel moisture and ignition time.

Most variation among species in fuel moisture under fire weather conditions arose from differences in saturated moisture content (3.4‐ to 3.6‐fold variation). Twig capacitance was also an important driver of fuel moisture under these weather conditions (1.9‐ to 2.2‐fold variation in moisture content). A suite of other leaf and root traits influencing how much shoots dry out as they approach wilting point each contributed 1.0‐ to 1.6‐fold variation in projected fuel moisture during fire weather. Fuel moisture variation in turn drove variation in flammability by modifying predicted ignition time.

Two main life‐history types in fire‐prone habitats are obligate seeders and resprouters. There were no significant differences between these species groups in estimated fuel moisture during fire weather, nor in any measured hydraulic traits.

Live fuel moisture is an important determinant of wildfire activity. Our data show that variation in tissue saturated moisture content among co‐occurring species represents an important ecological store of variation in flammability in the study communities.

A freePlain Language Summarycan be found within the Supporting Information of this article.

 
more » « less
PAR ID:
10452552
Author(s) / Creator(s):
 ;  ;  ; ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
35
Issue:
4
ISSN:
0269-8463
Page Range / eLocation ID:
p. 835-846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In semi‐arid regions where drought and wildfire events often co‐occur, such as in Southern California chaparral, relationships between plant hydration, drought‐ and fire‐adapted traits may explain landscape‐scale wildfire dynamics. To examine these patterns, fire scientists and plant physiologists quantify hydration in plants via mass‐based metrics of water content, including live fuel moisture, or pressure‐based metrics of physiological status, such as xylem water potential; however, relationships across these metrics, plant traits and flammability remain unresolved.

    To determine the impact of hydration on tissue‐level flammability (leaves and stems), we conducted laboratory dehydration tests across wet and dry seasons in which we simultaneously measured xylem water potential, live fuel moisture and flammability. We tested two widespread chaparral shrubs,Adenostoma fasciculatumandCeanothus megacarpus.

    Live fuel moisture showed a threshold‐type relationship with tissue flammability (increased ignitability and combustibility at specific hydration levels) that aligned with drought‐response traits (turgor loss point) and fire behaviour (increased fire likelihood and spread) identified at the landscape scale. Water potential was the better predictor of flammability in linear statistical models.

    A. fasciculatumwas more flammable thanC. megacarpus, and both species were more flammable during the wet growing season, suggesting seasonal growth or drought‐related tissue characteristics other than moisture content, such as lignin or chemical content, are critical for determining flammability.

    Our results suggest a mechanism for landscape‐scale increases in flammability at specific levels of drought stress. Integration of drought‐related traits, such as the turgor loss point, might improve models of wildfire risk in drought‐ and fire‐prone systems.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  2. Summary

    Vegetation–fire feedbacks are important for determining the distribution of forest and savanna. To understand how vegetation structure controls these feedbacks, we quantified flammability across gradients of tree density from grassland to forest in the Brazilian Cerrado.

    We experimentally burned 102 plots, for which we measured vegetation structure, fuels, microclimate, ignition success and fire behavior.

    Tree density had strong negative effects on ignition success, rate of spread, fire‐line intensity and flame height. Declining grass biomass was the principal cause of this decline in flammability as tree density increased, but increasing fuel moisture contributed. Although the response of flammability to tree cover often is portrayed as an abrupt, largely invariant threshold, we found the response to be gradual, with considerable variability driven largely by temporal changes in atmospheric humidity. Even when accounting for humidity, flammability at intermediate tree densities cannot be predicted reliably.

    Fire spread in savanna–forest mosaics is not as deterministic as often assumed, but may appear so where vegetation boundaries are already sharp. Where transitions are diffuse, fire spread is difficult to predict, but should become increasingly predictable over multiple fire cycles, as boundaries are progressively sharpened until flammability appears to respond in a threshold‐like manner.

     
    more » « less
  3. Summary

    Understanding the genetic and physiological basis of abiotic stress tolerance under field conditions is key to varietal crop improvement in the face of climate variability. Here, we investigate dynamic physiological responses to water stressin silicoand their relationships to genotypic variation in hydraulic traits of cotton (Gossypium hirsutum), an economically important species for renewable textile fiber production.

    In conjunction with an ecophysiological process‐based model, heterogeneous data (plant hydraulic traits, spatially‐distributed soil texture, soil water content and canopy temperature) were used to examine hydraulic characteristics of cotton, evaluate their consequences on whole plant performance under drought, and explore potential genotype × environment effects.

    Cotton was found to have R‐shaped hydraulic vulnerability curves (VCs), which were consistent under drought stress initiated at flowering. Stem VCs, expressed as percent loss of conductivity, differed across genotypes, whereas root VCs did not. Simulation results demonstrated how plant physiological stress can depend on the interaction between soil properties and irrigation management, which in turn affect genotypic rankings of transpiration in a time‐dependent manner.

    Our study shows how a process‐based modeling framework can be used to link genotypic variation in hydraulic traits to differential acclimating behaviors under drought.

     
    more » « less
  4. Abstract

    Severe droughts have led to lower plant growth and high mortality in many ecosystems worldwide, including tropical forests. Drought vulnerability differs among species, but there is limited consensus on the nature and degree of this variation in tropical forest communities. Understanding species‐level vulnerability to drought requires examination of hydraulic traits since these reflect the different strategies species employ for surviving drought.

    Here, we examined hydraulic traits and growth reductions during a severe drought for 12 common woody species in a wet tropical forest community in Puerto Rico to ask: Q1. To what extent can hydraulic traits predict growth declines during drought? We expected that species with more hydraulically vulnerable xylem and narrower safety margins (SMP50) would grow less during drought. Q2. How does species successional association relate to the levels of vulnerability to drought and hydraulic strategies? We predicted that early‐ and mid‐successional species would exhibit more acquisitive strategies, making them more susceptible to drought than shade‐tolerant species. Q3. What are the different hydraulic strategies employed by species and are there trade‐offs between drought avoidance and drought tolerance? We anticipated that species with greater water storage capacity would have leaves that lose turgor at higher xylem water potential and be less resistant to embolism forming in their xylem (P50).

    We found a large range of variation in hydraulic traits across species; however, they did not closely capture the magnitude of growth declines during drought. Among larger trees (≥10 cm diameter at breast height—DBH), some tree species with high xylem embolism vulnerability (P50) and risk of hydraulic failure (SMP50) experienced substantial growth declines during drought, but this pattern was not consistent across species. We found a trade‐off among species between drought avoidance (capacitance) and drought tolerating (P50) in this tropical forest community. Hydraulic strategies did not align with successional associations. Instead, some of the more drought‐vulnerable species were shade‐tolerant dominants in the community, suggesting that a drying climate could lead to shifts in long‐term forest composition and function in Puerto Rico and the Caribbean.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  5. Abstract

    We commonly use trait variation to characterize plant function within and among species and understand how vegetation responds to the environment. Seedling emergence is an especially vulnerable window affecting population and community dynamics, yet trait‐based frameworks often bypass this earliest stage of plant life. Here we assess whether traits vary in ecologically meaningful ways when seedlings are just days old. How do shared evolutionary history and environmental conditions shape trait expression, and can traits explain which seedlings endure drought?

    We measured seedling traits in the first 4 days of life for 16 annual plant species under two water treatments, exploring trait trade‐offs, species‐level plasticity and the ability of traits to predict duration of survival under drought.

    Nearly half of traits showed the imprint of evolutionary history (i.e. significant phylogenetic signal), often reflecting differences between grasses and forbs, two groups separated by a deep evolutionary split. Water availability altered trait expression in most cases, though species‐level plastic responses also reflected evolutionary history.

    On average, new seedlings exhibited substantial trait variation structured as multiple trade‐offs like those found in mature plants. Some species invested in thick roots and shoots, whereas others invested in more efficient tissues. Separately, some invested in tougher roots and others in deeper roots. We also observed trade‐offs related to growth rates (fast or slow) and biomass allocation (above‐ or below‐ground). Drought survival time was correlated most strongly with seed mass, root construction and allocation traits, and phylogeny (grasses vs. forbs).

    Synthesis.Our results show that seed and seedling trait variation among annual species is substantial, and that a few attributes could capture major dimensions of ecological strategies during emergence. With seedling survival times ranging twofold among annuals (from 7.5 to 14.5 days), these strategies could mitigate recruitment responses to more frequent or longer dry spells. Multivariate trait and plasticity strategies should be further explored in studies designed to assess trait‐fitness linkages during recruitment.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less