skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparative analysis of corolla tube development across three closely related Mimulus species with different pollination syndromes
Abstract Fusion of petals to form a corolla tube is considered a key innovation contributing to the diversification of many flowering plant lineages. Corolla tube length often varies dramatically among species and is a major determinant of pollinator preference. However, our understanding of the developmental dynamics underlying corolla tube length variation is very limited. Here we examined corolla tube growth in theMimulus lewisiispecies complex, an emerging model system for studying the developmental genetics and evo‐devo of pollinator‐associated floral traits. We compared developmental and cellular processes associated with corolla tube length variation among the bee‐pollinatedM. lewisii, the hummingbird‐pollinatedMimulus verbenaceus, and the self‐pollinatedMimulus parishii. We found that in all three species, cell size is non‐uniformly distributed along the mature tube, with the longest cells just distal to the stamen insertion site. Differences in corolla tube length among the three species are not associated with processes of organogenesis or early development but are associated with variation in multiple processes occurring later in development, including the location and duration of cell division and cell elongation. The tube growth curves of the small‐floweredM. parishiiand large‐floweredM. lewisiiare essentially indistinguishable, except thatM. parishiitubes stop growing earlier at a smaller size, suggesting a critical role of heterochrony in the shift from outcrossing to selfing. These results not only highlight the developmental process associated with corolla tube variation among species but also provide a baseline reference for future developmental genetic analyses of mutants or transgenic plants with altered corolla tube morphology in this emerging model system.  more » « less
Award ID(s):
1755373
PAR ID:
10452604
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Evolution & Development
Volume:
23
Issue:
3
ISSN:
1520-541X
Page Range / eLocation ID:
p. 244-255
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nectar guide trichomes play crucial ecological roles in bee-pollinated flowers, as they serve as footholds and guides for foraging bees to access the floral rewards. However, the genetic basis of natural variation in nectar guide trichomes among species remains poorly understood. In this study, we performed genetic analysis of nectar guide trichome variation between two closely related monkeyflower (Mimulus) species, the bumblebee-pollinatedMimulus lewisiiand self-pollinatedM. parishii. We demonstrate that aMIXTA-likeR2R3-MYBgene,GUIDELESS, is a major contributor to the nectar guide trichome length variation between the two species. The short-hairedM. parishiicarries a recessive allele due to non-synonymous substitutions in a highly conserved motif among MIXTA-like MYB proteins. Furthermore, our results suggest that besidesGUIDELESS, additional loci encoding repressors of trichome elongation also contribute to the transition from bumblebee-pollination to selfing. Taken together, these results suggest that during a pollination syndrome switch, changes in seemingly complex traits such as nectar guide trichomes could have a relatively simple genetic basis, involving just a few genes of large effects. 
    more » « less
  2. Summary Pollination syndromes are a key component of flowering plant diversification, prompting questions about the architecture of single traits and genetic coordination among traits. Here, we investigate the genetics of extreme floral divergence between naturally hybridizing monkeyflowers,Mimulus parishii(self‐pollinated) andM. cardinalis(hummingbird‐pollinated).We mapped quantitative trait loci (QTLs) for 18 pigment, pollinator reward/handling, and dimensional traits in parallel sets of F2hybrids plus recombinant inbred lines and generated nearly isogenic lines (NILs) for two dimensional traits, pistil length and corolla size.Our multi‐population approach revealed a highly polygenic basis (n = 190 QTLs total) for pollination syndrome divergence, capturing minor QTLs even for pigment traits with leading major loci. There was significant QTL overlap within pigment and dimensional categories. Nectar volume QTLs clustered with those for floral dimensions, suggesting a partially shared module. The NILs refined two pistil length QTLs, only one of which has tightly correlated effects on other dimensional traits.An overall polygenic architecture of floral divergence is partially coordinated by genetic modules formed by linkage (pigments) and likely pleiotropy (dimensions plus nectar). This work illuminates pollinator syndrome diversification in a model radiation and generates a robust framework for molecular and ecological genomics. 
    more » « less
  3. Buerkle, Alex (Ed.)
    Inferences about past processes of adaptation and speciation require a gene-scale and genome-wide understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of monkeyflowers in Mimulus section Erythranthe (27 accessions from seven species ) . Taxa within Erythranthe , particularly the parapatric and putatively sister species M . lewisii (bee-pollinated) and M . cardinalis (hummingbird-pollinated), have been a model system for investigating the ecological genetics of speciation and adaptation for over five decades. Across >8000 nuclear loci, multiple methods resolve a predominant species tree in which M . cardinalis groups with other hummingbird-pollinated taxa (37% of gene trees), rather than being sister to M . lewisii (32% of gene trees). We independently corroborate a single evolution of hummingbird pollination syndrome in Erythranthe by demonstrating functional redundancy in genetic complementation tests of floral traits in hybrids; together, these analyses overturn a textbook case of pollination-syndrome convergence. Strong asymmetries in allele sharing (Patterson’s D-statistic and related tests) indicate that gene tree discordance reflects ancient and recent introgression rather than incomplete lineage sorting. Consistent with abundant introgression blurring the history of divergence, low-recombination and adaptation-associated regions support the new species tree, while high-recombination regions generate phylogenetic evidence for sister status for M . lewisii and M . cardinalis . Population-level sampling of core taxa also revealed two instances of chloroplast capture, with Sierran M . lewisii and Southern Californian M . parishii each carrying organelle genomes nested within respective sympatric M . cardinalis clades. A recent organellar transfer from M . cardinalis , an outcrosser where selfish cytonuclear dynamics are more likely, may account for the unexpected cytoplasmic male sterility effects of selfer M . parishii organelles in hybrids with M . lewisii . Overall, our phylogenomic results reveal extensive reticulation throughout the evolutionary history of a classic monkeyflower radiation, suggesting that natural selection (re-)assembles and maintains species-diagnostic traits and barriers in the face of gene flow. Our findings further underline the challenges, even in reproductively isolated species, in distinguishing re-use of adaptive alleles from true convergence and emphasize the value of a phylogenomic framework for reconstructing the evolutionary genetics of adaptation and speciation. 
    more » « less
  4. Abstract Understanding how evolution proceeds from molecules to organisms to interactions requires integrative studies spanning biological levels. Linking phenotypes with associated genes and fitness illuminates how adaptive walks move organisms between fitness peaks. Floral evolution can confer rapid reproductive isolation, often converging in association with pollinator guilds. Within the monkeyflowers (Mimulussect.Erythranthe), yellow flowers within red hummingbird-pollinated species have arisen at least twice, suggesting possible pollinator shifts. We compare two yellow-flowered forms ofM. cardinalisandM. verbenaceusto their red counterparts in floral phenotypes, biochemistry, transcriptomic and genomic variation, and pollinator interactions. We find convergence in ongoing adaptive walks of both yellow morphs, with consistent changes in traits of large effect (floral pigments, associated gene expression), resulting in strong preference for yellow flowers by bumblebees. Shifts in scent emission and floral opening size also favor bee adaptation, suggesting smaller-effect steps from hummingbird to bee pollination. By examining intraspecific, incipient pollinator shifts in two related species, we elucidate adaptive walks at early stages, revealing how convergent large effect mutations (floral color) may drive pollinator attraction, followed by smaller effect changes for mechanical fit and reward access. Thus, ongoing adaptive walks may impact reproductive isolation and incipient speciation via convergent evolution. 
    more » « less
  5. Abstract Floral traits often show correlated variation within and among species. For species with fused petals, strong correlations among corolla tube, stamen, and pistil length are particularly prevalent, and these three traits are considered an intra-floral functional module. Pleiotropy has long been implicated in such modular integration of floral traits, but empirical evidence based on actual gene function is scarce. We tested the role of pleiotropy in the expression of intra-floral modularity in the monkeyflower species Mimulus verbenaceus by transgenic manipulation of a homolog of Arabidopsis PRE1. Downregulation of MvPRE1 by RNA interference resulted in simultaneous decreases in the lengths of corolla tube, petal lobe, stamen, and pistil, but little change in calyx and leaf lengths or organ width. Overexpression of MvPRE1 caused increased corolla tube and stamen lengths, with little effect on other floral traits. Our results suggest that genes like MvPRE1 can indeed regulate multiple floral traits in a functional module but meanwhile have little effect on other modules, and that pleiotropic effects of these genes may have played an important role in the evolution of floral integration and intra-floral modularity. 
    more » « less