skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The leaf polarity factors SGS3 and YABBYs regulate style elongation through auxin signaling in Mimulus lewisii
Summary Style length is a major determinant of breeding strategies in flowering plants and can vary dramatically between and within species. However, little is known about the genetic and developmental control of style elongation.We characterized the role of two classes of leaf adaxial–abaxial polarity factors, SUPPRESSOR OF GENE SILENCING3 (SGS3) and the YABBY family transcription factors, in the regulation of style elongation inMimulus lewisii. We also examined the spatiotemporal patterns of auxin response during style development.Loss ofSGS3function led to reduced style length via limiting cell division, and downregulation ofYABBYgenes by RNA interference resulted in shorter styles by decreasing both cell division and cell elongation. We discovered an auxin response minimum between the stigma and ovary during the early stages of pistil development that marks style differentiation. Subsequent redistribution of auxin response to this region was correlated with style elongation. Auxin response was substantially altered when bothSGS3andYABBYfunctions were disrupted.We suggest that auxin signaling plays a central role in style elongation and that the way in which auxin signaling controls the different cell division and elongation patterns underpinning natural style length variation is a major question for future research.  more » « less
Award ID(s):
1755373
PAR ID:
10359975
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
232
Issue:
5
ISSN:
0028-646X
Page Range / eLocation ID:
p. 2191-2206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Abscission is predetermined in specialized cell layers called the abscission zone (AZ) and activated by developmental or environmental signals. In the grass family, most identified AZ genes regulate AZ anatomy, which differs among lineages. A YABBY transcription factor,SHATTERING1(SH1), is a domestication gene regulating abscission in multiple cereals, including rice andSetaria. In rice,SH1inhibits lignification specifically in the AZ. However, the AZ ofSetariais nonlignified throughout, raising the question of howSH1functions in species without lignification.Crispr‐Cas9 knockout mutants ofSH1were generated inSetaria viridisand characterized with histology, cell wall and auxin immunofluorescence, transmission electron microscopy, hormonal treatment and RNA‐Seq analysis.Thesh1mutant lacks shattering, as expected. No differences in cell anatomy or cell wall components including lignin were observed betweensh1and the wild‐type (WT) until abscission occurs. Chloroplasts degenerated in the AZ of WT before abscission, but degeneration was suppressed by auxin treatment. Auxin distribution and expression of auxin‐related genes differed between WT andsh1, with the signal of an antibody to auxin detected in thesh1chloroplast.SH1inSetariais required for activation of abscission through auxin signaling, which is not reported in other grass species. 
    more » « less
  2. Summary Distyly is an intriguing floral adaptation that increases pollen transfer precision and restricts inbreeding. It has been a model system in evolutionary biology since Darwin. Although theS‐locus determines the long‐ and short‐styled morphs, the genes were unknown inTurnera. We have now identified these genes.We used deletion mapping to identify, and then sequence,BACclones and genome scaffolds to constructS/shaplotypes. We investigated candidate gene expression, hemizygosity, and used mutants, to explore gene function.Thes‐haplotype possessed 21 genes collinear with a region of chromosome 7 of grape. TheS‐haplotype possessed three additional genes and two inversions.TsSPH1was expressed in filaments and anthers,TsYUC6in anthers andTsBAHDin pistils. Long‐homostyle mutants did not possessTsBAHDand a short‐homostyle mutant did not expressTsSPH1.Three hemizygous genes appear to determine S‐morph characteristics inT. subulata. Hemizygosity is common to all distylous species investigated, yet the genes differ. The pistil candidate gene,TsBAHD, differs from that ofPrimula, but both may inactivate brassinosteroids causing short styles.TsYUC6is involved in auxin synthesis and likely determines pollen characteristics.TsSPH1is likely involved in filament elongation. We propose an incompatibility mechanism involvingTsYUC6andTsBAHD. 
    more » « less
  3. Summary All aerial epidermal cells in land plants are covered by the cuticle, an extracellular hydrophobic layer that provides protection against abiotic and biotic stresses and prevents organ fusion during development.Genetic and morphological analysis of the classic maizeadherent1(ad1) mutant was combined with genome‐wide binding analysis of the maize MYB transcription factor FUSED LEAVES1 (FDL1), coupled with transcriptional profiling offdl1mutants.We show thatAD1encodes an epidermally‐expressed 3‐KETOACYL‐CoA SYNTHASE (KCS) belonging to a functionally uncharacterized clade of KCS enzymes involved in cuticular wax biosynthesis. Wax analysis inad1mutants indicates thatAD1functions in the formation of very‐long‐chain wax components. We demonstrate that FDL1 directly binds to CCAACC core motifs present inAD1regulatory regions to activate its expression. Over 2000 additional target genes of FDL1, including many involved in cuticle formation, drought response and cell wall organization, were also identified.Our results identify a regulatory module of cuticle biosynthesis in maize that is conserved across monocots and eudicots, and highlight previously undescribed factors in lipid metabolism, transport and signaling that coordinate organ development and cuticle formation. 
    more » « less
  4. Summary Plant homeodomain leucine zipper IV (HD‐Zip IV) transcription factors (TFs) contain an evolutionarily conserved steroidogenic acute regulatory protein (StAR)‐related lipid transfer (START) domain. While the START domain is required for TF activity, its presumed role as a lipid sensor is not clear.Here we used tandem affinity purification fromArabidopsiscell cultures to demonstrate that PROTODERMAL FACTOR2 (PDF2), a representative member that controls epidermal differentiation, recruits lysophosphatidylcholines (LysoPCs) in a START‐dependent manner. Microscale thermophoresis assays confirmed that a missense mutation in a predicted ligand contact site reduces lysophospholipid binding.We additionally found that PDF2 acts as a transcriptional regulator of phospholipid‐ and phosphate (Pi) starvation‐related genes and binds to a palindromic octamer with consensus to a Pi response element. Phospholipid homeostasis and elongation growth were altered inpdf2mutants according to Pi availability. Cycloheximide chase experiments revealed a role for START in maintaining protein levels, and Pi starvation resulted in enhanced protein destabilization, suggesting a mechanism by which lipid binding controls TF activity.We propose that the START domain serves as a molecular sensor for membrane phospholipid status in the epidermis. Our data provide insights toward understanding how the lipid metabolome integrates Pi availability with gene expression. 
    more » « less
  5. Summary Here, we investigated the molecular genetic basis of mite domatia, structures on the underside of leaves that house mutualistic mites, and intraspecific variation in domatia size inVitis riparia(riverbank grape).Domatia and leaf traits were measured, and the transcriptomes of mite domatia from two genotypes ofV. ripariawith distinct domatia sizes were sequenced to investigate the molecular genetic pathways that regulate domatia development and intraspecific variation in domatia traits.Key trichome regulators as well as auxin and jasmonic acid are involved in domatia development. Genes involved in cell wall biosynthesis, biotic interactions, and molecule transport/metabolism are upregulated in domatia, consistent with their role in domatia development and function.This work is one of the first to date that provides insight into the molecular genetic bases of mite domatia. We identified key genetic pathways involved in domatia development and function, and uncovered unexpected pathways that provide an avenue for future investigation. We also found that intraspecific variation in domatia size inV. ripariaseems to be driven by differences in overall leaf development between genotypes. 
    more » « less