Abstract Crocodylomorpha, which includes living crocodylians and their extinct relatives, has a rich fossil record, extending back for more than 200 million years. Unlike modern semi‐aquatic crocodylians, extinct crocodylomorphs exhibited more varied lifestyles, ranging from marine to fully terrestrial forms. This ecological diversity was mirrored by a remarkable morphological disparity, particularly in terms of cranial morphology, which seems to be closely associated with ecological roles in the group. Here, I use geometric morphometrics to comprehensively investigate cranial shape variation and disparity in Crocodylomorpha. I quantitatively assess the relationship between cranial shape and ecology (i.e. terrestrial, aquatic, and semi‐aquatic lifestyles), as well as possible allometric shape changes. I also characterize patterns of cranial shape evolution and identify regime shifts. I found a strong link between shape and size, and a significant influence of ecology on the observed shape variation. Terrestrial taxa, particularly notosuchians, have significantly higher disparity, and shifts to more longirostrine regimes are associated with large‐bodied aquatic or semi‐aquatic species. This demonstrates an intricate relationship between cranial shape, body size and lifestyle in crocodylomorph evolutionary history. Additionally, disparity‐through‐time analyses were highly sensitive to different phylogenetic hypotheses, suggesting the description of overall patterns among distinct trees. For crocodylomorphs, most results agree in an early peak during the Early Jurassic and another in the middle of the Cretaceous, followed by nearly continuous decline until today. Since only crown‐group members survived through the Cenozoic, this decrease in disparity was likely the result of habitat loss, which narrowed down the range of crocodylomorph lifestyles. 
                        more » 
                        « less   
                    
                            
                            Late Cretaceous Notosuchians of the Maevarano Formation, Mahajanga Basin: An Ecomorphological Perspective
                        
                    
    
            ABSTRACT The Maastrichtian Maevarano Formation of northwestern Madagascar represents deposition in a seasonal dry-wet system and hosts a rich assemblage of well-preserved fossil vertebrates. Notosuchian crocodyliforms, a diverse group of mesoeucrocodylians frequently found in Upper Cretaceous rocks of Gondwana, are well represented in this assemblage. The current study focuses on the four recognized notosuchians (Simosuchus clarki, Araripesuchus tsangatsangana, Miadanasuchus oblita and Mahajangasuchus insignis), examining their morphologic diversity to provide insight into the ecology of these sympatric taxa. Here, several complete and incomplete skulls were examined, with measurements of each cranial opening acquired for quantitative analysis. Digital photographs and high-resolution renderings based on CT/µCT reconstructions were utilized. The size, position, and orientation of the external nares, orbits, and choanae were characterized, with the relative position and size of temporal, suborbital, and external mandibular fenestrae noted for comparisons. The dentitions (size, shape, number of teeth) of the four notosuchians were also included in this study, allowing direct insight into feeding ecology of the four taxa. From the data and approaches used herein, morphologic differences were utilized to interpret potential roles of the different species in the Maevarano ecosystem. The four notosuchians can be divided between terrestrial and semi-aquatic habits, and within these ecologies, size and tooth shape assist in determining possible feeding ecology. Of the three primarily carnivorous taxa (Mahajangasuchus, Miadanasuchus, Araripesuchus), only Miadanasuchus and Araripesuchus overlapped ecologically as terrestrial predators. Maximum adult size differences between these two forms likely contributed to differences in prey choice, thereby permitting coexistence in the terrestrial environment. Simosuchus, the other terrestrial notosuchian, clearly differs from the others based on both skull and dental morphology and occupied a primarily herbivorous niche. Finally, Mahajangasuchus is the sole semi-aquatic notosuchian in the assemblage, sharing this habitat with representative and smaller-bodied neosuchians and other aquatic vertebrates and potentially competing with the other carnivorous forms for prey. In sum, the Maevarano Formation vertebrate assemblage can be used as a case-study for comparison with other Mesozoic assemblages with multiple crocodyliforms. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2242717
- PAR ID:
- 10567347
- Publisher / Repository:
- ISSN 2220-0681)
- Date Published:
- Journal Name:
- Madamines
- ISSN:
- 2220-0681
- Subject(s) / Keyword(s):
- Ecomorphology crocodyliforms Maastrichtian Maevarano Formation Mahajanga Basin Madagascar
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Metriorhynchoid thalattosuchians were a marine clade of Mesozoic crocodylomorphs that evolved from semi‐aquatic, “gharial”‐like species into the obligately pelagic subclade Metriorhynchidae. To explore whether the sensory and physiological demands of underwater life necessitates a shift in rostral anatomy, both in neurology and vasculature, we investigate the trigeminal innervation and potential somatosensory abilities of metriorhynchoids by digitally segmenting the rostral neurovascular canals in CT scans of 10 extant and extinct crocodyliforms. The dataset includes the terrestrial, basal crocodyliformProtosuchus haughtoni, two semi‐aquatic basal metriorhynchoids, four pelagic metriorhynchids and three extant, semi‐aquatic crocodylians. In the crocodylian and basal metriorhynchoid taxa, we find three main neurovascular channels running parallel to one another posteroanteriorly down the length of the snout, whereas in metriorhynchids there are two, and inP. haughtonionly one. Crocodylians appear to be unique in their extensive trigeminal innervation, which is used to supply the integumentary sensory organs (ISOs) involved with their facial somatosensory abilities. Crocodylians have a far higher number of foramina on the maxillary bones than either metriorhynchoids orP. haughtoni, suggesting that the fossil taxa lacked the somatosensory abilities seen in extant species. We posit that the lack of ISO osteological correlates in metriorhynchoids is due to their basal position in Crocodyliformes, rather than a pelagic adaptation. This is reinforced by the hypothesis that extant crocodyliforms, and possibly some neosuchian clades, underwent a long “nocturnal bottleneck”—hinting that their complex network of ISOs evolved in Neosuchia, as a sensory trade‐off to compensate for poorer eyesight.more » « less
- 
            Abstract Eopneumatosuchus colbertiCrompton and Smith, 1980, known from a single partial skull, is an enigmatic crocodylomorph from the Lower Jurassic Kayenta Formation. In spite of its unique morphology, an exceptionally pneumatic braincase, and presence during a critical time period of crocodylomorph evolution, relatively little is known about this taxon. Here, we redescribe the external cranial morphology ofE.colberti, present novel information on its endocranial anatomy, evaluate its phylogenetic position among early crocodylomorphs, and seek to better characterize its ecology. Our examination clarifies key aspects of cranial suture paths and braincase anatomy. Comparisons with related taxa (e.g.,Protosuchus haughtoni) demonstrate that extreme pneumaticity of the braincase may be more widespread in protosuchids than previously appreciated. Computed tomography scans reveal an endocranial morphology that resembles that of other early crocodylomorphs, in particular the noncrocodyliform crocodylomorphAlmadasuchus figarii. There are, however, key differences in olfactory bulb and cerebral hemisphere morphology, which demonstrate the endocranium of crocodylomorphs is not as conserved as previously hypothesized. Our phylogenetic analysis recoversE.colbertias a close relative ofProtosuchus richardsoniandEdentosuchus tienshanensis, contrasting with previous hypotheses of a sister group relationship with Thalattosuchia. Previous work suggested the inner ear has some similarities to semi‐aquatic crocodyliforms, but the phylogenetic placement ofE.colbertiamong protosuchids with a terrestrial postcranial skeletal morphology complicates paleoecological interpretation.more » « less
- 
            We present a previously discovered but undescribed late Early Cretaceous vertebrate fauna from the Holly Creek Formation of the Trinity Group in Arkansas. The site from the ancient Gulf Coast is dominated by semi-aquatic forms and preserves a diverse aquatic, semi-aquatic, and terrestrial fauna. Fishes include fresh- to brackish-water chondrichthyans and a variety of actinopterygians, including semionotids, an amiid, and a new pycnodontiform, Anomoeodus caddoi sp. nov. Semi-aquatic taxa include lissamphibians, the solemydid turtle Naomichelys , a trionychid turtle, and coelognathosuchian crocodyliforms. Among terrestrial forms are several members of Dinosauria and one or more squamates, one of which, Sciroseps pawhuskai gen. et sp. nov., is described herein. Among Dinosauria, both large and small theropods ( Acrocanthosaurus , Deinonychus , and Richardoestesia ) and titanosauriform sauropods are represented; herein we also report the first occurrence of a nodosaurid ankylosaur from the Trinity Group. The fauna of the Holly Creek Formation is similar to other, widely scattered late Early Cretaceous assemblages across North America and suggests the presence of a low-diversity, broadly distributed continental ecosystem of the Early Cretaceous following the Late Jurassic faunal turnover. This low-diversity ecosystem contrasts sharply with the highly diverse ecosystem which emerged by the Cenomanian. The contrast underpins the importance of vicariance as an evolutionary driver brought on by Sevier tectonics and climatic changes, such as rising sea level and formation of the Western Interior Seaway, impacting the early Late Cretaceous ecosystem.more » « less
- 
            null (Ed.)Abstract Suction feeding has evolved independently in two highly disparate animal and plant systems, aquatic vertebrates and carnivorous bladderworts. We review the suction performance of animal and plant suction feeders to explore biomechanical performance limits for aquatic feeders based on morphology and kinematics, in the context of current knowledge of suction feeding. While vertebrates have the greatest diversity and size range of suction feeders, bladderworts are the smallest and fastest known suction feeders. Body size has profound effects on aquatic organismal function, including suction feeding, particularly in the intermediate flow regime that tiny organisms can experience. A minority of tiny organisms suction feed, consistent with model predictions that generating effective suction flow is less energetically efficient and also requires more flow-rate specific power at small size. Although the speed of suction flows generally increases with body and gape size, some specialized tiny plant and animal predators generate suction flows greater than those of suction feeders 100 times larger. Bladderworts generate rapid flow via high-energy and high-power elastic recoil and suction feed for nutrients (relying on photosynthesis for energy). Small animals may be limited by available muscle energy and power, although mouth protrusion can offset the performance cost of not generating high suction pressure. We hypothesize that both the high energetic costs and high power requirements of generating rapid suction flow shape the biomechanics of small suction feeders, and that plants and animals have arrived at different solutions due in part to their different energy budgets.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    