skip to main content


Title: Using Data Assimilation to Reconstruct High‐Latitude Polar Cap Patches
Abstract

Discrete high‐density plasma structures in the Earth's ionosphere that convect across the polar cap from the dayside to nightside are known as polar cap patches. This high‐latitude phenomenon can interfere and disrupt satellite and high‐frequency (HF) communications when the associated sharp electron density gradients are encountered, and therefore, accurate modeling and forecasting of such events would be greatly beneficial. In this study, we have utilized the assimilative Global Positioning System Ionospheric Inversion (GPSII) method to reconstruct the high‐latitude ionosphere utilizing data from Global Navigation Satellite System (GNSS) receivers, vertical ionosondes, the Resolute Bay Incoherent Scatter Radar (RISR‐N), in situ satellite data, and Super Dual Auroral Radar Network (SuperDARN) radars. The novel method of assimilating RISR‐N and SuperDARN ground scatter measurements helps to increase the limited number of observations at high latitudes. The reconstructed polar cap patches are shown to correspond with ground‐ and spaced‐based observations, illustrating the ability of utilizing GPSII to study the complex high‐latitude region.

 
more » « less
NSF-PAR ID:
10452705
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Radio Science
Volume:
55
Issue:
6
ISSN:
0048-6604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. During minor to moderate geomagnetic storms, caused by corotatinginteraction regions (CIRs) at the leading edge of high-speed streams (HSSs), solar windAlfvén waves modulated the magnetic reconnection at the daysidemagnetopause. The Resolute Bay Incoherent Scatter Radars (RISR-C andRISR-N), measuring plasma parameters in the cusp and polar cap, observedionospheric signatures of flux transfer events (FTEs) that resulted in theformation of polar cap patches. The patches were observed as they moved over the RISR, and the Canadian High-Arctic Ionospheric Network (CHAIN)ionosondes and GPS receivers. The coupling process modulated the ionospheric convection and the intensity of ionospheric currents, including the auroral electrojets. The horizontal equivalent ionospheric currents (EICs) are estimated from ground-based magnetometer data using an inversion technique. Pulses of ionospheric currents that are a source of Joule heating in the lower thermosphere launched atmospheric gravity waves, causing travelingionospheric disturbances (TIDs) that propagated equatorward. The TIDs wereobserved in the SuperDual Auroral Radar Network (SuperDARN) high-frequency (HF) radar groundscatter and the detrended total electron content (TEC) measured by globallydistributed Global Navigation Satellite System (GNSS) receivers. 
    more » « less
  2. Abstract

    Propagation of high‐frequency (HF) radio signals is strongly dependent on the ionospheric electron density structure along a communications link. The ground‐based, HF space weather radars of the Super Dual Auroral Radar Network (SuperDARN) utilize the ionospheric refraction of transmitted signals to monitor the global circulation ofE‐ andF‐region plasma irregularities. Previous studies have assessed the propagation characteristics of backscatter echoes from ionospheric irregularities in the auroral and polar regions of the Earth's ionosphere. By default, the geographic location of these echoes are found using empirical models which estimate the virtual backscattering height from the measured range along the radar signal path. However, the performance of these virtual height models has not yet been evaluated for mid‐latitude SuperDARN radar observations or for ground scatter (GS) propagation modes. In this study, we derive a virtual height model suitable for mid‐latitude SuperDARN observations using 5 years of data from the Christmas Valley East and West radars. This empirical model can be applied to both ionospheric and GS observations and provides an improved estimate of the ground range to the backscatter location compared to existing high‐latitude virtual height models. We also identify a region of overlapping half‐hopF‐region ionospheric scatter and one‐hopE‐region GS where the measured radar parameters (e.g., velocity, spectral width, elevation angle) are insufficient to discriminate between the two scatter types. Further studies are required to determine whether these backscatter echoes of ambiguous origin are observed by other mid‐latitude SuperDARN radars and their potential impact on scatter classification schemes.

     
    more » « less
  3. Abstract

    Joule heating deposits a significant amount of energy into the high‐latitude ionosphere and is an important factor in many magnetosphere‐ionosphere‐thermosphere coupling processes. We consider the relationship between localized temperature enhancements in polar cap measured with the Resolute Bay Incoherent Scatter Radar‐North (RISR‐N) and the orientation of the interplanetary magnetic field (IMF). Based on analysis of 10 years of data, RISR‐N most commonly observes ion heating in the noon sector under northwards IMF. We interpret heating events in that sector as being primarily driven by sunwards plasma convection associated with lobe reconnection. We attempt to model two of the observed temperature enhancements with a data‐driven first principles model of ionospheric plasma transport and dynamics, but fail to fully reproduce the ion temperature enhancements. However, evaluating the ion energy equation using the locally measured ion velocities reproduces the observed ion temperature enhancements. This result indicates that current techniques for estimating global plasma convection pattern are not adequately capturing mesoscale flows in the polar cap, and this can result in underestimation of the energy deposition into the ionosphere and thermosphere.

     
    more » « less
  4. Abstract

    The formation of polar cap density enhancements, such as tongues‐of‐ionization (TOIs), are often attributed to enhanced dayside reconnection and convection due to solar wind changes. However, ionospheric poleward moving density enhancements can also form in the absence of changes in the solar wind. This study examines how TOI and patch events that are not triggered by solar wind changes relate to magnetospheric processes, specifically substorms. Based on total electron content and Super Dual Auroral Radar Network (SuperDARN) observations, we find substorms that occur at the same time as TOIs are associated with sudden enhancements in dayside poleward flows during the substorm expansion phase. Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) observations also show enhanced field‐aligned currents (FACs) that extend into the dayside ionosphere during this period. We suggest that the global enhancement of FACs and convection during these substorms are the drivers of these TOIs by enhancing dayside convection and transporting high‐density lower‐latitude plasma into the polar cap. However, we also find that not all substorms are coincident with polar cap density enhancements. A superposed epoch study showed that the AL index for TOIs during substorms is not particularly stronger than substorms without TOIs, but epoch studies of AMPERE observations do show events with TOIs to have a higher total FAC on both the dayside and nightside. Our results show the importance of TOI formation during substorms when solar wind drivers are absent, and the importance of considering substorms in the global current system. This work also shows the need to incorporate substorms into models of high‐latitude global convection and currents.

     
    more » « less
  5. Abstract

    We present high‐resolution Resolute Bay Incoherent Scatter Radar (RISR) measurements in the cusp region during an IMF southward turning. The simultaneous RISR‐N and RISR‐C operation provided 3‐D observations of the dayside polar region, and offered an opportunity to identify the cusp dynamics and polar cap patch formation. Associated with the IMF southward turning, the F‐region density and temperature increased in the cusp, and the increase was particularly evident in the topside ionosphere. The high‐density plasma drifted into the polar cap by an enhanced poleward convection, and became a polar cap patch. The patch plasma was initially dominated by density originating in the cusp, and then later the subauroral ionospheric plasma also contributed to the density enhancement. Weak upflows were present but their contribution within the RISR altitude range was minor. We suggest that the patch source region switches due to dynamic variations of the cusp precipitation and convection from lower latitudes. RISR also detected a flow vortex embedded in the large‐scale convection, which is likely a poleward moving auroral form (PMAF) signature. Joule heating peaked in the cusp E and lower F‐regions. The F‐region Pedersen conductivity increased more than the Hall conductivity, and the high conductivity region extended poleward associated with the patch density enhancement. A 1‐D cusp simulation reproduced the density and temperature enhancements by soft electron precipitation, indicating the importance of soft electron precipitation for the cusp dynamics and the initial part of the patch formation.

     
    more » « less