skip to main content


Title: Noise in the LIGO livingston gravitational wave observatory due to trains
Abstract

Environmental seismic disturbances limit the sensitivity of LIGO gravitational wave detectors. Trains near the LIGO Livingston detector produce low frequency (0.5–10Hz) ground noise that couples into the gravitational wave sensitive frequency band (10–100Hz) through light reflected in mirrors and other surfaces. We investigate the effect of trains during the Advanced LIGO third observing run, and propose a method to search for narrow band seismic frequencies responsible for contributing to increases in scattered light. Through the use of the linear regression tool Lasso (least absolute shrinkage and selection operator) and glitch correlations, we identify the most common seismic frequencies that correlate with increases in detector noise as 0.6–0.8Hz, 1.7–1.9Hz, 1.8–2.0Hz, and 2.3–2.5Hzin the LIGO Livingston corner station.

 
more » « less
Award ID(s):
2110509 2150445
PAR ID:
10452711
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
40
Issue:
19
ISSN:
0264-9381
Page Range / eLocation ID:
Article No. 195015
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The sensitivity of urban canopy air temperature (Ta) to anthropogenic heat flux (QAH) is known to vary with space and time, but the key factors controlling such spatiotemporal variabilities remain elusive. To quantify the contributions of different physical processes to the magnitude and variability ofΔTa/ΔQAH(whereΔrepresents a change), we develop a forcing-feedback framework based on the energy budget of air within the urban canopy layer and apply it to diagnosingΔTa/ΔQAHsimulated by the Community Land Model Urban over the contiguous United States (CONUS). In summer, the medianΔTa/ΔQAHis around 0.01K W m21over the CONUS. Besides the direct effect ofQAHonTa, there are important feedbacks through changes in the surface temperature, the atmosphere–canopy air heat conductance (ca), and the surface–canopy air heat conductance. The positive and negative feedbacks nearly cancel each other out andΔTa/ΔQAHis mostly controlled by the direct effect in summer. In winter,ΔTa/ΔQAHbecomes stronger, with the median value increased by about 20% due to weakened negative feedback associated withca. The spatial and temporal (both seasonal and diurnal) variability ofΔTa/ΔQAHas well as the nonlinear response ofΔTatoΔQAHare strongly related to the variability ofca, highlighting the importance of correctly parameterizing convective heat transfer in urban canopy models.

     
    more » « less
  2. Abstract

    The interplay between charge transfer and electronic disorder in transition-metal dichalcogenide multilayers gives rise to superconductive coupling driven by proximity enhancement, tunneling and superconducting fluctuations, of a yet unwieldy variety. Artificial spacer layers introduced with atomic precision change the density of states by charge transfer. Here, we tune the superconductive coupling betweenNbSe2monolayers from proximity-enhanced to tunneling-dominated. We correlate normal and superconducting properties inSnSe1+δmNbSe21tailored multilayers with varying SnSe layer thickness (m=115). From high-field magnetotransport the critical fields yield Ginzburg–Landau coherence lengths with an increase of140%cross-plane (m=19), trending towards two-dimensional superconductivity form>9. We show cross-overs between three regimes: metallic with proximity-enhanced coupling (m=14), disordered-metallic with intermediate coupling (m=59) and insulating with Josephson tunneling (m>9). Our results demonstrate that stacking metal mono- and dichalcogenides allows to convert a metal/superconductor into an insulator/superconductor system, prospecting the control of two-dimensional superconductivity in embedded layers.

     
    more » « less
  3. Abstract

    We report the temperature dependence of the Yb valence in the geometrically frustrated compoundYbB4from 12 to 300 K using resonant x-ray emission spectroscopy at the YbLα1transition. We find that the Yb valence,v, is hybridized between thev = 2 andv = 3 valence states, increasing fromv=2.61±0.01at 12 K tov=2.67±0.01at 300 K, confirming thatYbB4is a Kondo system in the intermediate valence regime. This result indicates that the Kondo interaction inYbB4is substantial, and is likely to be the reason whyYbB4does not order magnetically at low temperature, rather than this being an effect of geometric frustration. Furthermore, the zero-point valence of the system is extracted from our data and compared with other Kondo lattice systems. The zero-point valence seems to be weakly dependent on the Kondo temperature scale, but not on the valence change temperature scaleTv.

     
    more » « less
  4. Abstract

    The stratospheric influence on summertime high surface ozone (O3) events is examined using a twenty-year simulation from the Whole Atmosphere Community Climate Model. We find thatO3transported from the stratosphere makes a significant contribution to the surfaceO3variability where background surfaceO3exceeds the 95thpercentile, especially over western U.S. Maximum covariance analysis is applied toO3anomalies paired with stratosphericO3tracer anomalies to identify the stratospheric intrusion and the underlying dynamical mechanism. The first leading mode corresponds to deep stratospheric intrusions in the western and northern tier of the U.S., and intensified northeasterlies in the mid-to-lower troposphere along the west coast, which also facilitate the transport to the eastern Pacific Ocean. The second leading mode corresponds to deep intrusions over the Intermountain Regions. Both modes are associated with eastward propagating baroclinic systems, which are amplified near the end of the North Pacific storm tracks, leading to strong descents over the western U.S.

     
    more » « less
  5. Abstract

    We present the KODIAQ-Z survey aimed to characterize the cool, photoionized gas at 2.2 ≲z≲ 3.6 in 202 Hi-selected absorbers with 14.6 ≤logNHI< 20 that probe the interface between galaxies and the intergalactic medium (IGM). We find that gas with14.6logNHI<20at 2.2 ≲z≲ 3.6 can be metal-rich (−1.6 ≲ [X/H] ≲ − 0.2) as seen in damped Lyαabsorbers (DLAs); it can also be very metal-poor ([X/H] < − 2.4) or even pristine ([X/H] < − 3.8), which is not observed in DLAs but is common in the IGM. For16<logNHI<20absorbers, the frequency of pristine absorbers is about 1%–10%, while for14.6logNHI16absorbers it is 10%–20%, similar to the diffuse IGM. Supersolar gas is extremely rare (<1%) at these redshifts. The factor of several thousand spread from the lowest to highest metallicities and large metallicity variations (a factor of a few to >100) between absorbers separated by less than Δv< 500 km s−1imply that the metals are poorly mixed in14.6logNHI<20gas. We show that these photoionized absorbers contribute to about 14% of the cosmic baryons and 45% of the cosmic metals at 2.2 ≲z≲ 3.6. We find that the mean metallicity increases withNHi, consistent with what is found inz< 1 gas. The metallicity of gas in this column density regime has increased by a factor ∼8 from 2.2 ≲z≲ 3.6 toz< 1, but the contribution of the14.6logNHI<19absorbers to the total metal budget of the universe atz< 1 is a quarter of that at 2.2 ≲z≲ 3.6. We show that FOGGIE cosmological zoom-in simulations have a similar evolution of [X/H] withNHi, which is not observed in lower-resolution simulations. In these simulations, very metal-poor absorbers with [X/H] < − 2.4 atz∼ 2–3 are tracers of inflows, while higher-metallicity absorbers are a mixture of inflows and outflows.

     
    more » « less