The sensitivity of urban canopy air temperature (
Environmental seismic disturbances limit the sensitivity of LIGO gravitational wave detectors. Trains near the LIGO Livingston detector produce low frequency (0.5–
- PAR ID:
- 10452711
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 40
- Issue:
- 19
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- Article No. 195015
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ) to anthropogenic heat flux ( ) is known to vary with space and time, but the key factors controlling such spatiotemporal variabilities remain elusive. To quantify the contributions of different physical processes to the magnitude and variability of (where represents a change), we develop a forcing-feedback framework based on the energy budget of air within the urban canopy layer and apply it to diagnosing simulated by the Community Land Model Urban over the contiguous United States (CONUS). In summer, the median is around 0.01 over the CONUS. Besides the direct effect of on , there are important feedbacks through changes in the surface temperature, the atmosphere–canopy air heat conductance ( ), and the surface–canopy air heat conductance. The positive and negative feedbacks nearly cancel each other out and is mostly controlled by the direct effect in summer. In winter, becomes stronger, with the median value increased by about 20% due to weakened negative feedback associated with . The spatial and temporal (both seasonal and diurnal) variability of as well as the nonlinear response of to are strongly related to the variability of , highlighting the importance of correctly parameterizing convective heat transfer in urban canopy models. -
Abstract The interplay between charge transfer and electronic disorder in transition-metal dichalcogenide multilayers gives rise to superconductive coupling driven by proximity enhancement, tunneling and superconducting fluctuations, of a yet unwieldy variety. Artificial spacer layers introduced with atomic precision change the density of states by charge transfer. Here, we tune the superconductive coupling between
monolayers from proximity-enhanced to tunneling-dominated. We correlate normal and superconducting properties in tailored multilayers with varying SnSe layer thickness ( ). From high-field magnetotransport the critical fields yield Ginzburg–Landau coherence lengths with an increase of cross-plane ( ), trending towards two-dimensional superconductivity for . We show cross-overs between three regimes: metallic with proximity-enhanced coupling ( ), disordered-metallic with intermediate coupling ( ) and insulating with Josephson tunneling ( ). Our results demonstrate that stacking metal mono- and dichalcogenides allows to convert a metal/superconductor into an insulator/superconductor system, prospecting the control of two-dimensional superconductivity in embedded layers. -
Abstract We report the temperature dependence of the Yb valence in the geometrically frustrated compound
from 12 to 300 K using resonant x-ray emission spectroscopy at the Yb transition. We find that the Yb valence,v , is hybridized between thev = 2 andv = 3 valence states, increasing from at 12 K to at 300 K, confirming that is a Kondo system in the intermediate valence regime. This result indicates that the Kondo interaction in is substantial, and is likely to be the reason why does not order magnetically at low temperature, rather than this being an effect of geometric frustration. Furthermore, the zero-point valence of the system is extracted from our data and compared with other Kondo lattice systems. The zero-point valence seems to be weakly dependent on the Kondo temperature scale, but not on the valence change temperature scaleT v . -
Abstract The stratospheric influence on summertime high surface ozone (
) events is examined using a twenty-year simulation from the Whole Atmosphere Community Climate Model. We find that transported from the stratosphere makes a significant contribution to the surface variability where background surface exceeds the 95th percentile, especially over western U.S. Maximum covariance analysis is applied to anomalies paired with stratospheric tracer anomalies to identify the stratospheric intrusion and the underlying dynamical mechanism. The first leading mode corresponds to deep stratospheric intrusions in the western and northern tier of the U.S., and intensified northeasterlies in the mid-to-lower troposphere along the west coast, which also facilitate the transport to the eastern Pacific Ocean. The second leading mode corresponds to deep intrusions over the Intermountain Regions. Both modes are associated with eastward propagating baroclinic systems, which are amplified near the end of the North Pacific storm tracks, leading to strong descents over the western U.S. -
Abstract We present the KODIAQ-Z survey aimed to characterize the cool, photoionized gas at 2.2 ≲
z ≲ 3.6 in 202 Hi -selected absorbers with 14.6 ≤ < 20 that probe the interface between galaxies and the intergalactic medium (IGM). We find that gas with at 2.2 ≲z ≲ 3.6 can be metal-rich (−1.6 ≲ [X/H] ≲ − 0.2) as seen in damped Lyα absorbers (DLAs); it can also be very metal-poor ([X/H] < − 2.4) or even pristine ([X/H] < − 3.8), which is not observed in DLAs but is common in the IGM. For absorbers, the frequency of pristine absorbers is about 1%–10%, while for absorbers it is 10%–20%, similar to the diffuse IGM. Supersolar gas is extremely rare (<1%) at these redshifts. The factor of several thousand spread from the lowest to highest metallicities and large metallicity variations (a factor of a few to >100) between absorbers separated by less than Δv < 500 km s−1imply that the metals are poorly mixed in gas. We show that these photoionized absorbers contribute to about 14% of the cosmic baryons and 45% of the cosmic metals at 2.2 ≲z ≲ 3.6. We find that the mean metallicity increases withN Hi , consistent with what is found inz < 1 gas. The metallicity of gas in this column density regime has increased by a factor ∼8 from 2.2 ≲z ≲ 3.6 toz < 1, but the contribution of the absorbers to the total metal budget of the universe atz < 1 is a quarter of that at 2.2 ≲z ≲ 3.6. We show that FOGGIE cosmological zoom-in simulations have a similar evolution of [X/H] withN Hi , which is not observed in lower-resolution simulations. In these simulations, very metal-poor absorbers with [X/H] < − 2.4 atz ∼ 2–3 are tracers of inflows, while higher-metallicity absorbers are a mixture of inflows and outflows.