Abstract KAI2 proteins are plant α/β hydrolase receptors which perceive smoke-derived butenolide signals and endogenous, yet unidentified KAI2-ligands (KLs). The number of functional KAI2 receptors varies among species and KAI2 gene duplication and sub-functionalization likely plays an adaptative role by altering specificity towards different KLs. Legumes represent one of the largest families of flowering plants and contain many agronomic crops. Prior to their diversification, KAI2 underwent duplication resulting in KAI2A and KAI2B. Here we demonstrate thatPisum sativumKAI2A and KAI2B are active receptors and enzymes with divergent ligand stereoselectivity. KAI2B has a higher affinity for and hydrolyses a broader range of substrates including strigolactone-like stereoisomers. We determine the crystal structures of PsKAI2B in apo and butenolide-bound states. The biochemical, structural, and mass spectra analyses of KAI2s reveal a transient intermediate on the catalytic serine and a stable adduct on the catalytic histidine, confirming its role as a bona fide enzyme. Our work uncovers the stereoselectivity of ligand perception and catalysis by diverged KAI2 receptors and proposes adaptive sensitivity to KAR/KL and strigolactones by KAI2B.
more »
« less
Desmethyl butenolides are optimal ligands for karrikin receptor proteins
Summary Strigolactones and karrikins are butenolide molecules that regulate plant growth. They are perceived by the α/β‐hydrolase DWARF14 (D14) and its homologue KARRIKIN INSENSITIVE2 (KAI2), respectively. Plant‐derived strigolactones have a butenolide ring with a methyl group that is essential for bioactivity. By contrast, karrikins are abiotic in origin, and the butenolide methyl group is nonessential. KAI2 is probably a receptor for an endogenous butenolide, but the identity of this compound remains unknown.Here we characterise the specificity of KAI2 towards differing butenolide ligands using genetic and biochemical approaches.We find that KAI2 proteins from multiple species are most sensitive to desmethyl butenolides that lack a methyl group. Desmethyl‐GR24 and desmethyl‐CN‐debranone are active by KAI2 but not D14. They are more potent KAI2 agonists compared with their methyl‐substituted reference compounds bothin vitroand in plants. The preference of KAI2 for desmethyl butenolides is conserved inSelaginella moellendorffiiandMarchantia polymorpha, suggesting that it is an ancient trait in land plant evolution.Our findings provide insight into the mechanistic basis for differential ligand perception by KAI2 and D14, and support the view that the endogenous substrates for KAI2 and D14 have distinct chemical structures and biosynthetic origins.
more »
« less
- Award ID(s):
- 1856741
- PAR ID:
- 10452738
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 230
- Issue:
- 3
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 1003-1016
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Karrikins (KARs) are a class of butenolide compounds found in smoke that were first identified as seed germination stimulants for fire‐following species. Early studies of KARs classified the germination and postgermination responses of many plant species and investigated crosstalk with plant hormones that regulate germination. The discovery thatArabidopsis thalianaresponds to KARs laid the foundation for identifying mutants with altered KAR responses. Genetic analysis of KAR signalling revealed an unexpected link to strigolactones (SLs), a class of carotenoid‐derived plant hormones. Substantial progress has since been made towards understanding how KARs are perceived and regulate plant growth, in no small part due to advances in understanding SL perception. KAR and SL signalling systems are evolutionarily related and retain a high degree of similarity. There is strong evidence that KARs are natural analogues of an endogenous signal(s), KAI2 ligand (KL), which remains unknown. KAR/KL signalling regulates many developmental processes in plants including germination, seedling photomorphogenesis, and root and root hair growth. KAR/KL signalling also affects abiotic stress responses and arbuscular mycorrhizal symbiosis. Here, we summarise the current knowledge of KAR/KL signalling and discuss current controversies and unanswered questions in this field.more » « less
-
Summary Root hair (RH) cells can elongate to several hundred times their initial size, and are an ideal model system for investigating cell size control. Their development is influenced by both endogenous and external signals, which are combined to form an integrative response. Surprisingly, a low‐temperature condition of 10°C causes increased RH growth inArabidopsisand in several monocots, even when the development of the rest of the plant is halted.Previously, we demonstrated a strong correlation between RH growth response and a significant decrease in nutrient availability in the growth medium under low‐temperature conditions. However, the molecular basis responsible for receiving and transmitting signals related to the availability of nutrients in the soil, and their relation to plant development, remain largely unknown.We have discovered two antagonic gene regulatory networks (GRNs) controlling RH early transcriptome responses to low temperature. One GNR enhances RH growth and it is commanded by the transcription factors (TFs)ROOT HAIR DEFECTIVE 6(RHD6),HAIR DEFECTIVE 6‐LIKE 2 and 4(RSL2‐RSL4) and a member of the homeodomain leucine zipper (HD‐Zip I) group I 16 (AtHB16). On the other hand, a second GRN was identified as a negative regulator of RH growth at low temperature and it is composed by the trihelix TFGT2‐LIKE1(GTL1) and the associated DF1, a previously unidentified MYB‐like TF (AT2G01060) and several members of HD‐Zip I group (AtHB3, AtHB13, AtHB20, AtHB23).Functional analysis of both GRNs highlights a complex regulation of RH growth response to low temperature, and more importantly, these discoveries enhance our comprehension of how plants synchronize RH growth in response to variations in temperature at the cellular level.more » « less
-
KAI2 receptors, classified as plant α/β hydrolase enzymes, are capable of perceiving smoke-derived butenolide signals and endogenous, yet unidentified KAI2-ligands (KLs). While the number of functional KAI2 receptors varies among land plant species, rice has only one KAI2 gene. Rice, a significant crop and representative of grasses, relies on KAI2-mediated Arbuscular mycorrhiza (AM) symbioses to flourish in traditionally arid and nutrient-poor environments. This study presents the first crystal structure of an active rice (Oryza sativa, Os) KAI2 hydrolase receptor. Our structural and biochemical analyses uncover grass-unique pocket residues influencing ligand sensitivity and hydrolytic activity. Through structure-guided analysis, we identify a specific residue whose mutation enables the increase or decrease of ligand perception, catalytic activity, and signal transduction. Furthermore, we investigate OsKAI2-mediated signaling by examining its ability to form a complex with its binding partner, the F-box protein DWARF3 (D3) ubiquitin ligase and subsequent degradation of the target substrate OsSMAX1, demonstrating the significant role of hydrophobic interactions in the OsKAI2-D3 interface. This study provides new insights into the diverse and pivotal roles of the OsKAI2 signaling pathway in the plant kingdom, particularly in grasses.more » « less
-
Summary The onset of stomatal closure reduces transpiration during drought. In seed plants, drought causes declines in plant water status which increases leaf endogenous abscisic acid (ABA) levels required for stomatal closure. There are multiple possible points of increased belowground resistance in the soil–plant atmospheric continuum that could decrease leaf water potential enough to trigger ABA production and the subsequent decreases in transpiration.We investigate the dynamic patterns of leaf ABA levels, plant hydraulic conductance and the point of failure in the soil–plant conductance in the highly embolism‐resistant speciesCallitris tuberculatausing continuous dendrometer measurements of leaf water potential during drought.We show that decreases in transpiration and ABA biosynthesis begin before any permanent decreases in predawn water potential, collapse in soil–plant hydraulic pathway and xylem embolism spread.We find that a dynamic but recoverable increases in hydraulic resistance in the soil in close proximity to the roots is the most likely driver of declines in midday leaf water potential needed for ABA biosynthesis and the onset of decreases in transpiration.more » « less
An official website of the United States government
