skip to main content


Title: Night lighting and anthropogenic noise alter the activity and body condition of pinyon mice ( Peromyscus truei )
Abstract

Anthropogenic noise and artificial night lighting have been shown to have substantial effects on animal behavior, physiology, and species interactions. Despite the large body of previous work, very few studies have studied the combined effects of light and noise pollution, especially experimentally in the field. Rodents are a highly diverse group that are predominantly nocturnal and occupy a wide range of habitats worldwide, frequently in close association with human development, placing them at a heightened risk from sensory disturbances. To test the singular and combined effects of various levels of anthropogenic light and noise exposure on pinyon mouse (Peromyscus truei) activity and body condition, we used standard trapping methods across a gradient of light and noise and the two combined and accounted for variation of moonlight, vegetation structure, and weather. We hypothesized that increased levels of artificial light would decrease trap success and lead to lower body condition due to an increase in perceived predation risk and that increased noise levels would increase trap success and body condition due to a reduction in predation risk and/or release from competition. Pinyon mouse trap success declined as light intensity increased, and the effect was comparable to that of moonlight, which is well known to influence rodent activity and perception of predation risk. Although noise pollution did not alter trap success of pinyon mice, individuals captured in noisier areas at the beginning of the season had lower body condition than those from quieter areas. Body condition was uninfluenced by noise and light later in the season. We also found no evidence of any additive or synergistic effects of the two stimuli. Our results provide evidence that alterations to the sensory environment from anthropogenic activity can affect wild rodents in several ways. As anthropogenic development increases to meet the demands of growing human populations, more ecosystems will be exposed to increased levels of sensory disturbance, making the understanding of how these changes affect wildlife critical to ongoing conservation efforts.

 
more » « less
Award ID(s):
1812280
NSF-PAR ID:
10452764
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
12
Issue:
3
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Urbanization has dramatically altered Earth's landscapes and changed a multitude of environmental factors. This has resulted in intense land‐use change, and adverse consequences such as the urban heat island effect (UHI), noise pollution, and artificial light at night (ALAN). However, there is a lack of research on the combined effects of these environmental factors on life‐history traits and fitness, and on how these interactions shape food resources and drive patterns of species persistence. Here, we systematically reviewed the literature and created a comprehensive framework of the mechanistic pathways by which urbanization affects fitness and thus favors certain species. We found that urbanization‐induced changes in urban vegetation, habitat quality, spring temperature, resource availability, acoustic environment, nighttime light, and species behaviors (e.g., laying, foraging, and communicating) influence breeding choices, optimal time windows that reduce phenological mismatch, and breeding success. Insectivorous and omnivorous species that are especially sensitive to temperature often experience advanced laying behaviors and smaller clutch sizes in urban areas. By contrast, some granivorous and omnivorous species experience little difference in clutch size and number of fledglings because urban areas make it easier to access anthropogenic food resources and to avoid predation. Furthermore, the interactive effect of land‐use change and UHI on species could be synergistic in locations where habitat loss and fragmentation are greatest and when extreme‐hot weather events take place in urban areas. However, in some instances, UHI may mitigate the impact of land‐use changes at local scales and provide suitable breeding conditions by shifting the environment to be more favorable for species' thermal limits and by extending the time window in which food resources are available in urban areas. As a result, we determined five broad directions for further research to highlight that urbanization provides a great opportunity to study environmental filtering processes and population dynamics. 
    more » « less
  2. Patchily distributed resources require individuals to balance risks and rewards associated with foraging sites that vary widely in quality, as determined by factors such as food availability, disturbance rates and predation risk. These trade‐offs may be especially acute for migratory species during the non‐breeding season when they must access high‐quality resources to recover from and prepare for migration. We assessed how density and body condition of non‐breeding Hudsonian GodwitsLimosa haemastica, acting as proxies for foraging site quality, were related to foraging success, availability of intertidal foraging habitat, landscape and bay characteristics, human disturbances and predation risk at 42 intertidal mudflats in southern Chile. Godwit density and body condition increased with availability of foraging habitat and foraging success, except on mudflats where individuals were more alert and agitated (i.e. higher scanning rates and more displacement flights). In contrast, body condition and density of foraging Godwits were lower at sites with high levels of perceived disturbance. Our findings suggest that the non‐lethal effects of disturbances (i.e. perceived risks) may affect behaviour (e.g. scanning rates and displacement flights) in ways that can compromise refuelling rates, body condition and performance across seasons. Thus, efforts to reduce disturbances to individuals foraging on tidal mudflats may be important to conserve migratory shorebirds, a guild undergoing severe population declines.

     
    more » « less
  3. Abstract Aim

    Anthropogenic noise pollution (ANP) is a globally invasive phenomenon impacting natural systems, but most research has occurred at local scales with few species. We investigated continental‐scale breeding season associations with ANP for 322 bird species to test whether small‐scale predictions related to breeding habitat, migratory behaviour, body mass and vocal traits are consistent at broad spatial extents for an extensive group of species.

    Location

    Conterminous USA.

    Time period

    2004–2011.

    Major taxa studied

    North American breeding birds.

    Methods

    We calculated, for each species, the association between the breeding season and ANP, using spatially explicit estimates of ANP from the National Park Service and weekly estimates of probabilities of occurrence based on observations from the eBird citizen‐science database. We evaluated how the association of the breeding season for each species with ANP was related to expectations based on size, migratory behaviour and breeding habitat. For a subset of species, we used vocal trait data for song duration, pitch and complexity to evaluate hypotheses from the birdsong literature related to habitat complexity and sensitivity to ANP.

    Results

    Species that breed predominantly in anthropogenic environments were associated with twice the level of ANP (~7.4 dB) as species breeding in forested habitats (~3.2 dB). However, we did not find evidence to suggest that birds with higher‐pitched songs are more likely to be found in areas with higher levels of ANP. Residents and migratory species did not differ in associations with ANP, but songs were less complex among forest‐breeding species than non‐forest‐breeding species and increased in complexity with increasing ANP.

    Main conclusions

    Anthropogenic noise pollution is an important factor associated with breeding distributions of bird species in North America. Vocal traits could be useful to understand factors that affect sensitivity to ANP and to predict the potential impact of ANP, although future studies should aim to understand how and why patterns differ across spatial scales.

     
    more » « less
  4. Abstract

    Light pollution is increasing worldwide and significantly affects animal behavior. In birds, these effects include advancement of morning activity and onset of dawn song, which may affect extra‐pair paternity. Advanced dawn song of males may stimulate females to engage in extra‐pair copulations, and the earlier activity onset may affect the males’ mate guarding behavior. Earlier work showed an effect of light at night on extra‐pair behavior, but this was in an area with other anthropogenic disturbances. Here, we present a two‐year experimental study on effects of light at night on extra‐pair paternity of great tits (Parus major). Previously dark natural areas were illuminated with white, red, and green LED lamps and compared to a dark control. In 2014, the proportion of extra‐pair young in broods increased with distance to the red and white lamps (i.e., at lower light intensities), but decreased with distance to the poles in the dark control. In 2013, we found no effects on the proportion of extra‐pair young. The total number of offspring sired by a male was unaffected by artificial light at night in both years, suggesting that potential changes in female fidelity in pairs breeding close to white and red light did not translate into fitness benefits for the males of these pairs. Artificial light at night might disrupt the natural patterns of extra‐pair paternity, possibly negates potential benefits of extra‐pair copulations and thus could alter sexual selection processes in wild birds.

     
    more » « less
  5. Abstract Aim

    A unique risk faced by nocturnally migrating birds is the disorienting influence of artificial light at night (ALAN). ALAN originates from anthropogenic activities that can generate other forms of environmental pollution, including the emission of fine particulate matter (PM2.5). PM2.5concentrations can display strong seasonal variation whose origin can be natural or anthropogenic. How this variation affects seasonal associations with ALAN and PM2.5for nocturnally migrating bird populations has not been explored.

    Location

    Western Hemisphere.

    Time Period

    2021

    Major Taxa Studied

    Nocturnally migrating passerine (NMP) bird species.

    Methods

    We combined monthly estimates of PM2.5and ALAN with weekly estimates of relative abundance for 164 NMP species derived using observations from eBird. We identified groups of species with similar associations with monthly PM2.5. We summarized their shared environmental, geographical, and ecological attributes.

    Results

    PM2.5was lowest in North America, especially at higher latitudes during the boreal winter. PM2.5was highest in the Amazon Basin, especially during the dry season (August–October). ALAN was highest within eastern North America, especially during the boreal winter. For NMP species, PM2.5associations reached their lowest levels during the breeding season (<10 μg/m3) and highest levels during the nonbreeding season, especially for long‐distance migrants that winter in Central and South America (~20 μg/m3). Species that migrate through Central America in the spring encountered similarly high PM2.5concentrations. ALAN associations reached their highest levels for species that migrate (~12 nW/cm2/sr) or spend the nonbreeding season (~15 nW/cm2/sr) in eastern North America.

    Main Conclusions

    We did not find evidence that the disorienting influence of ALAN enhances PM2.5exposure during stopover in the spring and autumn for NMP species. Rather, our findings suggest biomass burning in the Neotropics is exposing NMP species to consistently elevated PM2.5concentrations for an extended period of their annual life cycles.

     
    more » « less