Ecosystem services, essential for supporting life, are increasingly being altered by anthropogenic activities. This study focuses on the Cross Timbers ecoregion of the southern Great Plains, USA, where oak woodland and grassland co-exist. However, grasslands are rapidly transitioning to woodlands through a process known as woody plant encroachment, or are being considered for switchgrass biofuel production. Our objectives were to quantify the supporting (plant biodiversity, aboveground net primary productivity), provisioning (water quantity, forage production), regulating (soil organic carbon, flood regulation), and cultural services (hunting-based recreation, aesthetics) of four land use types—tallgrass prairie, oak woodland, eastern redcedar woodland, and switchgrass biofuel production—using the Millennium Ecosystem Assessment Framework. We integrated these services into an ecosystem sustainability index. Results showed that tallgrass prairie provided balanced services and ranked highest in this index. Eastern redcedar and switchgrass exhibited an imbalance in services, while oak woodland’s ranking varied with normalization methods. Our results highlight the need for grassland conservation by curtailment of eastern redcedar expansion. While oak woodland ranks high in cultural services, its restoration is recommended to enhance multiple ecosystem services. This study provides a roadmap for quantitatively evaluating ecosystem services to inform management decisions for ecosystem transitions and promote regional sustainability. Future research should broaden stakeholder engagement and explore integrated land use strategies within large watersheds encompassing multiple land uses to enhance regional environmental sustainability. 
                        more » 
                        « less   
                    
                            
                            Consumer roles of small mammals within fragmented native tallgrass prairie
                        
                    
    
            Abstract Grassland ecosystems globally are being negatively impacted by changes in climate, disturbance regimes, nutrient flux, and consumer guilds. Changes in the trophic ecology of consumers can substantially influence local resources, contributing to shifting diversity, community turnover, and other processes of ecosystem change. Small mammals are diverse and abundant within grasslands and yet the impact of changing ecosystems on small mammals and the role of these mammals as consumers are still both under‐studied. We assessed small mammal resource use within grassland and woodland vegetation types that have resulted from landscape‐scale experimental disturbance through fire treatments within the tallgrass prairie ecoregion of the North American Great Plains. We predicted that resource use would vary significantly among grassland vs. woodland communities, in turn reducing the role of small mammals in contributing to future maintenance of native prairies. We sampled five dominant species of rodents across three years and multiple habitats. Using stable isotope analysis, we investigated isotopic niche area and overlap to infer variation in diet, both within and among species. Resource use shifted in bivariate isotopic space seasonally but not across years when combining all species and habitats. Inferred spring diet (based on fur samples) was highly diverse and overlapping. Summer isotopic values (based on liver tissue) in woody habitat treatments were narrower and overlapped less than within grassland habitats. Consumers generally shifted from C4herbivory to C3herbivory, or greater omnivory, when analyzing grassland, shrubland, and woodland habitats respectively. Within the tallgrass prairie ecosystem, small mammal populations in herbaceous‐dominated habitats use a broader variety of resources than small mammals in proximate woody‐dominated habitats. As native grasslands experience woody encroachment, small mammal assemblages experience turnover of dominant species and associated changes in diet. Ecosystem changes such as cessation of frequent fire resulting in more woody habitats may include reduced roles by native small mammals as consumers/dispersers/propagators of native grassland plants. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2025849
- PAR ID:
- 10452776
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Woody plant encroachment is a main driver of landscape change in drylands globally. In the Chihuahuan Desert, past livestock overgrazing interacted with prolonged drought to convert vast expanses of black grama (Bouteloua eriopoda) grasslands to honey mesquite (Prosopis glandulosa) shrublands. Such ecosystem state transitions have greatly reduced habitat for grassland wildlife species, increased soil erosion, and inhibited the delivery of ecosystem services to local communities. The potential for wild herbivores to trigger or reinforce shrubland states may be underappreciated, however, and few studies compare herbivory effects across multiple consumer taxa. Here, I address the roles of multiple mammalian herbivores in driving or reinforcing landscape change in the Chihuahuan Desert by examining their effects on plant communities over multiple spatial and temporal scales, as well as across plant life stages. Moreover, I studied these herbivore effects in the context of precipitation pulses, long-term climate influences, competitive interactions, and habitat structure. I used two long-term studies that hierarchically excluded herbivores by body size over 25 years (Herbivore Exclosure Study) and 21 years (Ecotone Study), and a perennial grass seedling herbivory experiment. Native rodents and lagomorphs were especially important in determining grass cover and plant community composition in wet periods and affected perennial grass persistence over multiple life stages. Conversely, during drought, climate drove declines in perennial grass cover, promoting shrub expansion across the landscape. In that shrub-encroached state, native small mammals reinforced grass loss in part because habitat structure provided cover from predators. This research advances our understanding of an underappreciated component of ecosystem change in drylands – small mammal herbivory – and highlights the need to incorporate positive feedbacks from native small mammals into conceptual models of grassland-shrubland transitions.more » « less
- 
            Abstract Changes in climate and land management over the last half‐century have favoured woody plants native to grasslands and led to the rapid expansion of woody species. Despite this being a global phenomenon, it is unclear why some woody species have rapidly expanded while others have not. We assessed whether the most abundant woody encroaching species in tallgrass prairie have common growth forms and physiology or unique traits that differentiate their resource‐use strategies.We characterized the abundance, above‐ground carbon allocation, and leaf‐level physiological and structural traits of seven woody encroaching species in tallgrass prairie that span an order of magnitude in abundance. To identify species‐specific increases in abundance, we used a 34‐year species composition dataset at Konza Prairie Biological Station (Central Great Plains, USA). We then compared biomass allocation and leaf‐level traits to determine differences in carbon and water use strategies among species.While all focal species increased in abundance over time, encroachment in this system is primarily driven by three species:Cornus drummondii,Prunus americanaandRhus glabra. The most dominant species,Cornus drummondii, had the most extreme values for several traits, including the lowest leaf:stem mass ratios, lowest photosynthetic capacity and highest turgor loss point.Two of the most abundant species,Cornus drummondiiandRhus glabra, had opposing growth forms and resource‐use strategies. These species had significantly different above‐ground carbon allocation, leaf‐level drought tolerance and photosynthetic capacity. There were surprisingly few interspecific differences in specific leaf area and leaf dry matter content, suggesting these traits were poor predictors of species‐level encroachment.Synthesis. Woody encroaching species in tallgrass prairie encompass a spectrum of growth forms and leaf physiology. Two of the most abundant woody species fell at opposite ends of this spectrum. Our results suggest niche differences among a community of woody species facilitate the rapid encroachment by a few species. This study shows that woody encroaching species do not conform to a ‘one‐size‐fits‐all’ strategy, and a diversity of growth forms and physiological strategies may make it more challenging to reach management goals that aim to conserve or restore grassland communities.more » « less
- 
            Abstract Tallgrass prairie is among the most threatened ecosystems but is often fragmented and surrounded by human‐modified landscapes. Small mammals are integral components of tallgrass prairies. However, little is known about how landscape composition, configuration, and management impact small mammals in tallgrass prairies.We conducted a systematic literature review to identify species‐specific and community associations with three broad topics: landscape composition, landscape configuration, and management practices.We identified 61 studies that assessed our variables of interest. We categorised the location, species assessed, variables monitored, and results by species and for the community.The majority of studies (64%) were conducted in two states, Illinois and Kansas. Deer mice (Peromyscus maniculatus), prairie voles (Microtus ochrogaster), and white‐footed mice (Peromyscus leucopus) showed specific associations with landscape variables, with deer mice preferring bare ground and recently burned plots, and prairie voles preferring thatch and negatively associated with prescribed fire. White‐footed mice were frequently associated with wooded areas.Small mammal biodiversity was positively associated with patchy habitats containing greater diversity in vegetative composition and management regime. Management and land composition were both relatively well studied for several species; habitat configuration was understudied.We identified significant gaps in our understanding of small mammal landscape ecology in tallgrass prairies. With tallgrass prairie restoration a growing trend in this region, a greater understanding of drivers of small mammal populations will be crucial to successful restoration efforts. Future research should focus on understudied areas and species, and examine how habitat heterogeneity impacts small mammal biodiversity.more » « less
- 
            This is data for vegetation canopy cover measured from each of the SMES study plots. Vegetation canopy cover was measured from each of the 36 one-meter2 quadrats twice each year. Animal consumers have important roles in ecosystems, determining plant species composition and structure, regulating rates of plant production and nutrient, and altering soil structure and chemistry. The purpose of this study is to determine whether or not the activities of small mammals regulate plant community structure, plant species diversity, and spatial vegetation patterns in Chihuahuan Desert shrublands and grasslands. The purpose of this study is to determine whether or not the activities of small mammals regulate plant community structure, plant species diversity, and spatial vegetation patterns in Chihuahuan Desert shrublands and grasslands. What role if any do indigenous small mammal consumers have in maintaining desertified landscapes in the Chihuahuan Desert? Additionally, how do the effects of small mammals interact with changing climate to affect vegetation patterns over time? This study will provide long-term experimental tests of the roles of consumers on ecosystem pattern and process across a latitudinal climate gradient. The following questions or hypotheses will be addressed. 1) Do small mammals influence patterns of plant species composition and diversity, vegetation structure, and spatial patterns of vegetation canopy cover and biomass in Chihuahuan Desert shrublands and grasslands? Are small mammals keystone species that determine plant species composition and physiognomy of Chihuahuan Desert communities? Do small mammals have a significant role in maintaining the existence of shrub islands and spatial heterogeneity of creosotebush shrub communities? 2) Do small mammals affect the taxonomic composition and spatial pattern of vegetation similarly or differently in grassland communities as compared to shrub communities? How do patterns compare between grassland and shrubland sites, and how do these relatively small scale patterns relate to overall landscape vegetation patterns? 3) Do small mammals interact with short-term (annual) and long-term (decades) climate change to affect temporal changes in vegetation spatial patterns and species composition? 4) Do small mammals interact with other herbivore and granivore consumers enough to affect the species composition and abundances of other consumers such as ants and grasshoppers?more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
