skip to main content

Title: On the shift‐invert Lanczos method for the buckling eigenvalue problem

We consider the problem of extracting a few desired eigenpairs of the buckling eigenvalue problem , whereKis symmetric positive semi‐definite,KGis symmetric indefinite, and the pencil is singular, namely,KandKGshare a nontrivial common nullspace. Moreover, in practical buckling analysis of structures, bases for the nullspace ofKand the common nullspace ofKandKGare available. There are two open issues for developing an industrial strength shift‐invert Lanczos method: (1) the shift‐invert operator does not exist or is extremely ill‐conditioned, and (2) the use of the semi‐inner product induced byKdrives the Lanczos vectors rapidly toward the nullspace ofK, which leads to a rapid growth of the Lanczos vectors in norms and causes permanent loss of information and the failure of the method. In this paper, we address these two issues by proposing a generalized buckling spectral transformation of the singular pencil and a regularization of the inner product via a low‐rank updating of the semi‐positive definiteness ofK. The efficacy of our approach is demonstrated by numerical examples, including one from industrial buckling analysis.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical Methods in Engineering
Page Range / eLocation ID:
p. 2751-2769
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Earth system models (ESMs) rely on the calculation of canopy conductance in land surface models (LSMs) to quantify the partitioning of land surface energy, water, andCO2fluxes. This is achieved by scaling stomatal conductance,gw, determined from physiological models developed for leaves. Traditionally, models forgwhave been semi‐empirical, combining physiological functions with empirically determined calibration constants. More recently, optimization theory has been applied to modelgwinLSMs under the premise that it has a stronger grounding in physiological theory and might ultimately lead to improved predictive accuracy. However, this premise has not been thoroughly tested. Using original field data from contrasting forest systems, we compare a widely used empirical type and a more recently developed optimization‐typegwmodel, termedBBandMED, respectively. Overall, we find no difference between the two models when used to simulategwfrom photosynthesis data, or leaf gas exchange from a coupled photosynthesis‐conductance model, or gross primary productivity and evapotranspiration for aFLUXNETtower site with theCLM5 communityLSM. Field measurements reveal that the key fitted parameters forBBandMED,g1Bandg1M,exhibit strong species specificity in magnitude and sensitivity toCO2, andCLM5 simulations reveal that failure to include this sensitivity can result in significant overestimates of evapotranspiration for high‐CO2scenarios. Further, we show thatg1Bandg1Mcan be determined from meanci/ca(ratio of leaf intercellular to ambientCO2concentration). Applying this relationship withci/cavalues derived from a leaf δ13C database, we obtain a global distribution ofg1Bandg1M, and these values correlate significantly with mean annual precipitation. This provides a new methodology for global parameterization of theBBandMEDmodels inLSMs, tied directly to leaf physiology but unconstrained by spatial boundaries separating designated biomes or plant functional types.

    more » « less
  2. Summary

    Mesophyll conductance (gm) is the diffusion ofCO2from intercellular air spaces (IAS) to the first site of carboxylation in the mesophyll cells. In C3species,gmis influenced by diverse leaf structural and anatomical traits; however, little is known about traits affectinggmin C4species.

    To address this knowledge gap, we used online oxygen isotope discrimination measurements to estimategmand microscopy techniques to measure leaf structural and anatomical traits potentially related togmin 18 C4grasses.

    In this study,gmscaled positively with photosynthesis and intrinsic water‐use efficiency (TEi), but not with stomatal conductance. Also,gmwas not determined by a single trait but was positively correlated with adaxial stomatal densities (SDada), stomatal ratio (SR), mesophyll surface area exposed toIAS(Smes) and leaf thickness. However,gmwas not related to abaxial stomatal densities (SDaba) and mesophyll cell wall thickness (TCW).

    Our study suggests that greaterSDadaandSRincreasedgmby increasingSmesand creating additional parallel pathways forCO2diffusion inside mesophyll cells. Thus,SDada,SRandSmesare important determinants of C4gmand could be the target traits selected or modified for achieving greatergmandTEiin C4species.

    more » « less
  3. Large‐scale bacteria culturing can present many challenges for small academic laboratories. To address these challenges a cost effective, laboratory scale bioreactor was designed and implemented. The constructed bioreactor addresses common problems that small or teaching‐focused laboratories face when attempting scale up cultures. The design utilizes materials commonly found in standard chemistry laboratories that are easily assembled with minor modifications. The system was validated through the replication of natural product production in shake flasks and the bioreactor. Additionally, measurements were done to ensure the designed bioreactor had comparablekLavalues to common shake flask conditions. We anticipate that this design will be of use to other small academic natural product groups as well as teaching laboratories as it offers an economical way to undertake large scale culturing of microorganisms.

    more » « less
  4. Abstract

    Inspired by significant local distortions found near vacancies in a neutron pair distribution function analysis study (G. King et al.,Inorg. Chem.2012, 51, 13060) of Sr2MSbO5.5(M = Ca and Sr), this computational study finds minimum‐energy structures with these and related distortions using density functional theory (DFT) with the Perdew‐Burke‐Ernzerhof (PBE) functional as implemented in the Vienna Ab Initio Simulations Package (VASP) (G. Kresse and J. Furthmüller,Phys. Rev. B, 1996, 54, 11169; G. Kresse and J. Hafner,Phys. Rev. B, 1993, 47, 558; G. Kresse and J. Furthmüller,Comput. Mater. Sci., 1996, 6, 15). All structures were optimized using the conjugate gradient method. The global minima found for both systems featured trigonal bipyramid SbO5structures and edge sharing with M‐centered polyhedra. However, while calcium ions occupied full and partial octahedra, the larger strontium ions were more commonly found in full and partial pentagonal bipyramids. Molecular dynamics with velocity rescaling at1200K revealed movements of the oxygen vacancy via polyhedral rotations. This work highlights the need to consider both square pyramid to trigonal bipyramid rearrangements around small ions and rotational polyhedral movements in simulating oxygen vacancy conduction in oxygen‐deficient double perovskites.

    more » « less
  5. Abstract

    Plasma discharge fluid simulations indicate a negative streamer can be initiated from the narrow tip of a cone‐shaped, realistically sized hydrometeor in a uniform electric field as low as 0.65Ek. A negative streamer, however, cannot be formed from a cone‐shaped hydrometeor with a slightly smaller base radius or a column hydrometeor under otherwise the same conditions. The simulation also shows the negative streamer is accompanied by a positive streamer. The results present implications for understanding lightning initiation and the physical mechanism of the recently discovered thunderstorm‐related phenomenon called fast negative breakdown. Finally, the initiated negative streamer develops with a relatively constant head radius and velocity in contrast with the expanding and accelerating positive streamer. It appears that the differences between the properties of each polarity of streamer are more pronounced in an electric field belowEk.

    more » « less