Traditionally, leaves were thought to be supplied with Cut leaves of The rates of assimilation and efflux of xylem‐transported The majority of xylem‐transported
Steady‐state photosynthetic Gas exchange necessarily incorporates photosynthesis and (photo)respiration. Each process was expected to respond on different timescales due to differences in metabolite compartmentation, biochemistry and diffusive pathways. We hypothesized that metabolic lags in photorespiration relative to photosynthesis/respiration and Our data show that photorespiratory delays cause offsets in predicted Multirate
- NSF-PAR ID:
- 10452896
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 222
- Issue:
- 2
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 785-792
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary CO 2for photosynthesis by the atmosphere and respiration. Recent studies, however, have shown that the xylem also transports a significant amount of inorganic carbon into leaves through the bulk flow of water. However, little is known about the dynamics and proportion of xylem‐transportedCO 2that is assimilated, vs simply lost to transpiration.Populus deltoides andBrassica napus were placed in eitherKC l or one of three [NaH13CO 3] solutions dissolved in water to simultaneously measure the assimilation and the efflux of xylem‐transportedCO 2exiting the leaf across light andCO 2response curves in real‐time using a tunable diode laser absorption spectroscope.CO 2increased with increasing xylem [13CO 2*] and transpiration. Under saturating irradiance, rates of assimilation using xylem‐transportedCO 2accounted forc. 2.5% of the total assimilation in both species in the highest [13CO 2*].CO 2is assimilated, and efflux is small compared to respiration. Assimilation of xylem‐transportedCO 2comprises a small portion of total photosynthesis, but may be more important whenCO 2is limiting. -
Summary Mesophyll conductance (
g m) is the diffusion ofCO 2from intercellular air spaces (IAS ) to the first site of carboxylation in the mesophyll cells. In C3species,g mis influenced by diverse leaf structural and anatomical traits; however, little is known about traits affectingg min C4species.To address this knowledge gap, we used online oxygen isotope discrimination measurements to estimate
g mand microscopy techniques to measure leaf structural and anatomical traits potentially related tog min 18 C4grasses.In this study,
g mscaled positively with photosynthesis and intrinsic water‐use efficiency (TE i), but not with stomatal conductance. Also,g mwas not determined by a single trait but was positively correlated with adaxial stomatal densities (SD ada), stomatal ratio (SR ), mesophyll surface area exposed toIAS (S mes) and leaf thickness. However,g mwas not related to abaxial stomatal densities (SD aba) and mesophyll cell wall thickness ( ).T CWOur study suggests that greater
SD adaandSR increasedg mby increasingS mesand creating additional parallel pathways forCO 2diffusion inside mesophyll cells. Thus,SD ada,SR andS mesare important determinants of C4‐g mand could be the target traits selected or modified for achieving greaterg mandTE iin C4species. -
Summary Autotrophic respiration is a major driver of the global C cycle and may contribute a positive climate warming feedback through increased atmospheric concentrations of
CO 2. The extent of this feedback depends on plants' ability to acclimate respiration to maintain a constant carbon use efficiency (CUE ).We quantified respiratory partitioning of gross primary production (GPP) and
CUE of field‐grown trees in a long‐term warming experiment (+3°C). We delivered a13C–CO 2pulse to whole tree crowns and chased that pulse in the respiration of leaves, whole crowns, roots, and soil. We also measured the isotopic composition of soil microbial biomass and the respiration rates of leaves and whole crowns.We documented homeostatic respiratory acclimation of foliar and whole‐crown respiration rates; the trees adjusted to experimental warming such that leaf‐level respiration rates were not increased. Experimental warming had no detectable impact on respiratory partitioning or mean residence times. Of the13C label acquired by the trees, aboveground respiration consumed 10%, belowground respiration consumed 40%, and the remaining 50% was retained.
Experimental warming of +3°C did not alter respiratory partitioning at the scale of entire trees, suggesting that complete acclimation of respiration to warming is likely to dampen a positive climate warming feedback.
-
Temperature and nutrient supply are key factors that control phytoplankton ecophysiology, but their role is commonly investigated in isolation. Their combined effect on resource allocation, photosynthetic strategy, and metabolism remains poorly understood. To characterize the photosynthetic strategy and resource allocation under different conditions, we analyzed the responses of a marine cyanobacterium (
Synechococcus PCC 7002) to multiple combinations of temperature and nutrient supply. We measured the abundance of proteins involved in the dark (RuBisCO ,rbc L) and light (PhotosystemII , psbA) photosynthetic reactions, the content of chlorophylla , carbon and nitrogen, and the rates of photosynthesis, respiration, and growth. We found thatrbc L and psbA abundance increased with nutrient supply, whereas a temperature‐induced increase in psbA occurred only in nutrient‐replete treatments. Low temperature and abundant nutrients caused increased RuBisCO abundance, a pattern we observed also in natural phytoplankton assemblages across a wide latitudinal range. Photosynthesis and respiration increased with temperature only under nutrient‐sufficient conditions. These results suggest that nutrient supply exerts a stronger effect than temperature upon both photosynthetic protein abundance and metabolic rates inSynechococcus sp. and that the temperature effect on photosynthetic physiology and metabolism is nutrient dependent. The preferential resource allocation into the light instead of the dark reactions of photosynthesis as temperature rises is likely related to the different temperature dependence of dark‐reaction enzymatic rates versus photochemistry. These findings contribute to our understanding of the strategies for photosynthetic energy allocation in phytoplankton inhabiting contrasting environments. -
Summary We investigated the molecular basis and physiological implications of anion transport during pollen tube (
PT ) growth inArabidopsis thaliana (Col‐0).Patch‐clamp whole‐cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+]cyt). We investigated the pollen‐expressed proteins
At SLAH 3,At ALMT 12,At TMEM 16 andAt CCC as the putative anion transporters responsible for these currents.At CCC ‐GFP was observed at the shank andAt SLAH 3‐GFP at the tip and shank of thePT plasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip ofPT s with an anion vibrating probe were significantly lower inslah3 −/− andccc −/− mutants, but unaffected inalmt12 −/− andtmem16 −/− . We further characterised the effect ofpH andGABA by patch clamp. Strong regulation by extracellularpH was observed in the wild‐type, but not intmem16 −/− . Our results are compatible withAt TMEM 16 functioning as an anion/H+cotransporter and therefore, as a putativepH sensor.GABA presence: (1) inhibited the overall currents, an effect that is abrogated in thealmt12 −/− and (2) reduced the current inAt ALMT 12 transfectedCOS ‐7 cells, strongly suggesting the direct interaction ofGABA withAt ALMT12.Our data show that
At SLAH 3 andAt CCC activity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linkingPT growth modulation bypH ,GABA , and [Ca2+]cytthrough anionic transporters.