Droplet nucleation and condensation are ubiquitous phenomena in nature and industry. Over the past century, research has shown dropwise condensation heat transfer on nonwetting surfaces to be an order of magnitude higher than filmwise condensation heat transfer on wetting substrates. However, the necessity for nonwetting to achieve dropwise condensation is unclear. This article reports stable dropwise condensation on a smooth, solid, hydrophilic surface (θ a = 38°) having low contact angle hysteresis (<3°). We show that the distribution of nano- to micro- to macroscale droplet sizes (about 100 nm to 1 mm) for coalescing droplets agrees well with the classical distribution on hydrophobic surfaces and elucidate that the wettability-governed dropwise-to-filmwise transition is mediated by the departing droplet Bond number. Our findings demonstrate that achieving stable dropwise condensation is not governed by surface intrinsic wettability, as assumed for the past eight decades, but rather, it is dictated by contact angle hysteresis.
more »
« less
Gradient Quasi‐Liquid Surface Enabled Self‐Propulsion of Highly Wetting Liquids
Abstract Self‐propulsion of highly wetting liquids is important in heat exchanger, air conditioning, and refrigeration systems. However, it is challenging to achieve such a spontaneous motion as these liquids tend to wet all the surfaces due to their ultralow surface tensions. Despite that extensive asymmetric surface structures and gradient chemical coatings are developed for directional droplet transport, they will be flooded and covered by these liquids. Here, this challenge is addressed by creating a gradient quasi‐liquid surface to achieve the self‐propulsion of droplets with surface tensions down to 10.0 mN m−1. Such a surface engineered by tethering flexible polymers with gradient grafting density shows ultralow contact angle hysteresis (<1o) to highly wetting liquids. Thus, the surface can simultaneously provide sufficient driving forces through the gradient wettability and negligible retention forces through the slippery boundary lubrication for spontaneous droplet movement. Moreover, continual self‐propulsion of tiny droplets is achieved by spraying highly wetting liquids in simulated condensation conditions and demonstrates that adding temperature gradient can further accelerate the self‐propulsion. The study provides a new paradigm to promote passive removal of highly wetting droplets, leading to potential impacts in enhancing condensation heat transfer regardless of surface orientations.
more »
« less
- Award ID(s):
- 1929677
- PAR ID:
- 10452911
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 31
- Issue:
- 13
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dropwise condensation yields higher heat transfer coefficients by avoiding the thermal resistance of the condensate film, seen during filmwise condensation. This work explores further enhancement of dropwise condensation heat transfer through the use of electrowetting to achieve faster droplet growth via coalescence of the condensed droplets. Electrowetting is a well understood microfluidic technique to actuate and control droplets. This work shows that AC electric fields can significantly enhance droplet growth dynamics. This enhancement is a result of coalescence triggered by various types of droplet motion (translation of droplets, oscillations of three phase line), which in turn depends on the frequency of the applied AC waveform. The applied electric field modifies droplet condensation patterns as well as the roll-off dynamics on the surface. Experiments are conducted to study early-stage droplet growth dynamics, as well as steady state condensation rates under the influence of electric fields. It is noted that this study deals with condensation of humid air, and not pure steam. Results show that increasing the voltage magnitude and frequency increases droplet growth rate and overall condensation rate. Overall, this study reports more than a 30 % enhancement in condensation rate resulting from the applied electric field, which highlights the potential of this concept for condensation heat transfer enhancement.more » « less
-
Atmospheric condensation is very important for multiple practical applications such as heat transfer, thermal management, aerospace, and condensate harvesting. Water droplets heterogeneously nucleate on the surfaces when the temperature is below the dew point temperature. The nucleation energy barrier for a condensed droplet varies significantly with the humidity content in the operating environment. The freezing of this condensate is also dependent on the operating conditions and surface properties. This article presents an experimental study of condensation and freezing from humid air with the objective of understanding how the surface morphology and chemistry determines the droplet shape and wetting state. Hexagonal close-packed arrays of titanium (Ti) pillars are patterned using microsphere photolithography (MPL). The Ti nanostructured surface was tested with and without a Teflon© coating to reveal the condensate harvesting, passive freezing, and dropwise condensation applications, respectively. Condensation and freezing tests were conducted in the presence of non-condensable gases (air) with different relative humidity (RH) levels to control the nucleation site density. The experiments showed that droplet growth occurs in the following stages: initial nucleation, direct growth, and coalescence events. By pinning droplets, coalescence is suppressed for the Ti nanopillared surface altering the size distribution of droplets and significantly accelerating the freezing process.more » « less
-
Various forms of ecological monitoring and disease diagnosis rely upon the detection of amphiphiles, including lipids, lipopolysaccharides, and lipoproteins, at ultralow concentrations in small droplets. Although assays based on droplets’ wettability provide promising options in some cases, their reliance on the measurements of surface and bulk properties of whole droplets (e.g., contact angles, surface tensions) makes it difficult to monitor trace amounts of these amphiphiles within small-volume samples. Here, we report a design principle in which self-assembled monolayer–functionalized microstructured surfaces coated with silicone oil create locally disordered regions within a droplet’s contact lines to effectively concentrate amphiphiles within the areas that dominate the droplet static friction. Remarkably, such surfaces enable the ultrasensitive, naked-eye detection of amphiphiles through changes in the droplets’ sliding angles, even when the concentration is four to five orders of magnitude below their critical micelle concentration. We develop a thermodynamic model to explain the partitioning of amphiphiles at the contact line by their cooperative association within the disordered, loosely packed regions of the self-assembled monolayer. Based on this local analyte concentrating effect, we showcase laboratory-on-a-chip surfaces with positionally dependent pinning forces capable of both detecting industrially and biologically relevant amphiphiles (e.g., bacterial endotoxins), as well as sorting aqueous droplets into discrete groups based on their amphiphile concentrations. Furthermore, we demonstrate that the sliding behavior of amphiphile-laden aqueous droplets provides insight into the amphiphile’s effective length, thereby allowing these surfaces to discriminate between analytes with highly disparate molecular sizes.more » « less
-
Abstract Preventing water droplets from transitioning to ice is advantageous for numerous applications. It is demonstrated that the use of certain phase‐change materials, which are in liquid state under ambient conditions and have melting point higher than the freezing point of water, referred herein as phase‐switching liquids (PSLs), can impede condensation–frosting lasting up to 300 and 15 times longer in bulk and surface infused state, respectively, compared to conventional surfaces under identical environmental conditions. The freezing delay is primarily a consequence of the release of trapped latent heat due to condensation, but is also affected by the solidified PSL surface morphology and its miscibility in water. Regardless of surface chemistry, PSL‐infused textured surfaces exhibit low droplet adhesion when operated below the corresponding melting point of the solidified PSLs, engendering ice and frost repellency even on hydrophilic substrates. Additionally, solidified PSL surfaces display varying degrees of optical transparency, can repel a variety of liquids, and self‐heal upon physical damage.more » « less
An official website of the United States government
