skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Network analyses identify a transcriptomic proximodistal prepattern in the maize leaf primordium
Summary The formation of developmental boundaries is a common feature of multicellular plants and animals, and impacts the initiation, structure and function of all organs. Maize leaves comprise a proximal sheath that encloses the stem, and a distal photosynthetic blade that projects away from the plant axis. An epidermally derived ligule and a joint‐like auricle develop at the blade/sheath boundary of maize leaves. Mutations disturbing the ligule/auricle region disrupt leaf patterning and impact plant architecture, yet it is unclear how this developmental boundary is established.Targeted microdissection followed by transcriptomic analyses of young leaf primordia were utilized to construct a co‐expression network associated with development of the blade/sheath boundary.Evidence is presented for proximodistal gradients of gene expression that establish a prepatterned transcriptomic boundary in young leaf primordia, before the morphological initiation of the blade/sheath boundary in older leaves.This work presents a conceptual model for spatiotemporal patterning of proximodistal leaf domains, and provides a rich resource of candidate gene interactions for future investigations of the mechanisms of blade/sheath boundary formation in maize.  more » « less
Award ID(s):
1710973
PAR ID:
10452953
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
230
Issue:
1
ISSN:
0028-646X
Page Range / eLocation ID:
p. 218-227
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Grass leaves develop from a ring of primordial initial cells within the periphery of the shoot apical meristem, a pool of organogenic stem cells that generates all of the organs of the plant shoot. At maturity, the grass leaf is a flattened, strap-like organ comprising a proximal supportive sheath surrounding the stem and a distal photosynthetic blade. The sheath and blade are partitioned by a hinge-like auricle and the ligule, a fringe of epidermally derived tissue that grows from the adaxial (top) leaf surface. Together, the ligule and auricle comprise morphological novelties that are specific to grass leaves. Understanding how the planar outgrowth of grass leaves and their adjoining ligules is genetically controlled can yield insight into their evolutionary origins. Here we use single-cell RNA-sequencing analyses to identify a ‘rim’ cell type present at the margins of maize leaf primordia. Cells in the leaf rim have a distinctive identity and share transcriptional signatures with proliferating ligule cells, suggesting that a shared developmental genetic programme patterns both leaves and ligules. Moreover, we show that rim function is regulated by genetically redundant Wuschel-like homeobox3 (WOX3) transcription factors. Higher-order mutations in maizeWox3genes greatly reduce leaf width and disrupt ligule outgrowth and patterning. Together, these findings illustrate the generalizable use of a rim domain during planar growth of maize leaves and ligules, and suggest a parsimonious model for the homology of the grass ligule as a distal extension of the leaf sheath margin. 
    more » « less
  2. Summary The homology of the single cotyledon of grasses and the ontogeny of the scutellum and coleoptile as the initial, highly modified structures of the grass embryo are investigated using leaf developmental genetics and targeted transcript analyses in the model grassZea mayssubsp.mays.Transcripts of leaf developmental genes are identified in both the initiating scutellum and the coleoptile, while mutations disrupting mediolateral leaf development also disrupt scutellum and coleoptile morphology, suggesting that these grass‐specific organs are modified leaves.Higher‐order mutations inWUSCHEL‐LIKE HOMEOBOX3(WOX3) genes, involved in mediolateral patterning of plant lateral organs, inform a model for the fusion of coleoptilar margins during maize embryo development.Genetic, RNA‐targeting, and morphological evidence supports models for cotyledon evolution where the scutellum and coleoptile, respectively, comprise the distal and proximal domains of the highly modified, single grass cotyledon. 
    more » « less
  3. Hake, Sarah (Ed.)
    The plastochron, the time interval between the formation of two successive leaves, is an important determinant of plant architecture. We genetically and phenotypically investigated many-noded dwarf ( mnd ) mutants in barley. The mnd mutants exhibited a shortened plastochron and a decreased leaf blade length, and resembled previously reported plastochron1 ( pla1 ), pla2 , and pla3 mutants in rice. In addition, the maturation of mnd leaves was accelerated, similar to pla mutants in rice. Several barley mnd alleles were derived from three genes— MND1 , MND4 , and MND8 . Although MND4 coincided with a cytochrome P450 family gene that is a homolog of rice PLA1 , we clarified that MND1 and MND8 encode an N-acetyltransferase-like protein and a MATE transporter-family protein, which are respectively orthologs of rice GW6a and maize BIGE1 and unrelated to PLA2 or PLA3 . Expression analyses of the three MND genes revealed that MND1 and MND4 were expressed in limited regions of the shoot apical meristem and leaf primordia, but MND8 did not exhibit a specific expression pattern around the shoot apex. In addition, the expression levels of the three genes were interdependent among the various mutant backgrounds. Genetic analyses using the double mutants mnd4mnd8 and mnd1mnd8 indicated that MND1 and MND4 regulate the plastochron independently of MND8 , suggesting that the plastochron in barley is controlled by multiple genetic pathways involving MND1 , MND4 , and MND8 . Correlation analysis between leaf number and leaf blade length indicated that both traits exhibited a strong negative association among different genetic backgrounds but not in the same genetic background. We propose that MND genes function in the regulation of the plastochron and leaf growth and revealed conserved and diverse aspects of plastochron regulation via comparative analysis of barley and rice. 
    more » « less
  4. Summary Phenological studies often focus on relationships between flowering date and temperature or other environmental variables. Yet in species that preform flowers, anthesis is one stage of a lengthy developmental process, and effects of temperature on flower development in the year(s) before flowering are largely unknown.We investigated the effects of temperature during preformation on flower development inVaccinium vitis‐idaea. Using scanning electron microscopy, we established scores for developing primordia and examined effects of air temperature, depth of soil thaw, time of year and previous stage on development.Onset of flower initiation depends on soil thaw, and developmental change is greatest at early stages and during the warmest months. Regardless of temperature and time during the season, all basal floral primordia pause development at the same stage before whole‐plant dormancy.Once primordia are initiated, development does not appear to be influenced by air temperature differences within the range of variation among our sites. There may be strong endogenous flower‐level controls over development, particularly the stage at which morphogenesis ceases before dormancy. However, the strength of such internal controls in the face of continuing temperature extremes under a changing climate is unclear. 
    more » « less
  5. Summary Replicated trait evolution can provide insights into the mechanisms underlying the evolution of biodiversity. One example of replicated evolution is the awn, an organ elaboration in grass inflorescences.Awns are likely homologous to leaf blades. We hypothesized that awns have evolved repeatedly because a conserved leaf blade developmental program is continuously activated and suppressed over the course of evolution, leading to the repeated emergence and loss of awns. To evaluate predictions arising from our hypothesis, we used ancestral state estimations, comparative genetics, anatomy, and morphology to trace awn evolution.We discovered that awned lemmas that evolved independently share similarities in developmental trajectory. In addition, in two species with independently derived awns and differing awn morphologies (Brachypodium distachyonandAlopecurus myosuroides), we found that orthologs of theYABBYtranscription factor geneDROOPING LEAFare required for awn initiation. Our analyses of awn development inBrachypodium distachyon,Alopecurus myosuroides, andHolcus lanatusalso revealed that differences in the relative expansion of awned lemma compartments can explain diversity in awn morphology at maturity.Our results show that developmental conservation can underlie replicated evolution and can potentiate the evolution of morphological diversity. 
    more » « less