skip to main content


Title: Ribbed mussel Geukensia demissa population response to living shoreline design and ecosystem development
Abstract

Coastal communities increasingly invest in natural and nature‐based features (e.g., living shorelines) as a strategy to protect shorelines and enhance coastal resilience. Tidal marshes are a common component of these strategies because of their capacity to reduce wave energy and storm surge impacts. Performance metrics of restoration success for living shorelines tend to focus on how the physical structure of the created marsh enhances shoreline protection via proper elevation and marsh plant presence. These metrics do not fully evaluate the level of marsh ecosystem development. In particular, the presence of key marsh bivalve species can indicate the capability of the marsh to provide non‐protective services of value, such as water quality improvement and habitat provision. We observed an unexpected low to no abundance of the filter‐feeding ribbed mussel,Geukensia demissa, in living shoreline marshes throughout Chesapeake Bay. In salt marsh ecosystems along the Atlantic Coast of the United States, ribbed mussels improve water quality, enhance nutrient removal, stabilize the marsh, and facilitate long‐term sustainability of the habitat. Through comparative field surveys and experiments within a chronosequence of 13 living shorelines spanning 2–16 years since construction, we examined three factors we hypothesized may influence recruitment of ribbed mussels to living shoreline marshes: (1) larval access to suitable marsh habitat, (2) sediment quality of low marsh (i.e., potential mussel habitat), and (3) availability of high‐quality refuge habitat. Our findings suggest that at most sites larval mussels are able to access and settle on living shoreline created marshes behind rock sill structures, but that most recruits are likely not surviving. Sediment organic matter (OM) and plant density were correlated with mussel abundance, and sediment OM increased with marsh age, suggesting that living shoreline design (e.g., sand fill, planting grids) and lags in ecosystem development (sediment properties) are reducing the survival of the young recruits. We offer potential modifications to living shoreline design and implementation practices that may facilitate self‐sustaining ribbed mussel populations in these restored habitats.

 
more » « less
NSF-PAR ID:
10452967
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
12
Issue:
3
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rising sea levels and the increased frequency of extreme events put coastal communities at serious risk. In response, shoreline armoring for stabilization has been widespread. However, this solution does not take the ecological aspects of the coasts into account. The “living shoreline” technique includes coastal ecology by incorporating natural habitat features, such as saltmarshes, into shoreline stabilization. However, the impacts of living shorelines on adjacent benthic communities, such as submersed aquatic vegetation (SAV), are not yet clear. In particular, while both marshes and SAV trap the sediment necessary for their resilience to environmental change, the synergies between the communities are not well-understood. To help quantify the ecological and protective (shoreline stabilization) aspects of living shorelines, we presented modeling results using the Delft3D-SWAN system on sediment transport between the created saltmarshes of the living shorelines and adjacent SAV in a subestuary of Chesapeake Bay. We used a double numerical approach to primarily validate deposition measurements made in the field and to further quantify the sediment balance between the two vegetation communities using an idealized model. This model used the same numerical domain with different wave heights, periods, and basin slopes and includes the presence of rip-rap, which is often used together with marsh plantings in living shorelines, to look at the influences of artificial structures on the sediment exchange between the plant communities. The results of this study indicated lower shear stress, lower erosion rates, and higher deposition rates within the SAV bed compared with the scenario with the marsh only, which helped stabilize bottom sediments by making the sediment balance positive in case of moderate wave climate (deposition within the two vegetations higher than the sediment loss). The presence of rip-rap resulted in a positive sediment balance, especially in the case of extreme events, where sediment balance was magnified. Overall, this study concluded that SAV helps stabilize bed level and shoreline, and rip-rap works better with extreme conditions, demonstrating how the right combination of natural and built solutions can work well in terms of ecology and coastal protection. 
    more » « less
  2. Abstract

    Salt marshes suffered large‐scale degradation in recent decades. Extreme events such as hot and dry spells contributed significantly to this, and are predicted to increase not only in intensity, but also in frequency under future climate scenarios. Such repetitive extreme events may generate cumulative effects on ecosystem resilience. It is therefore important to elucidate how marsh vegetation responds to repetitive stress, and whether changes in key species interactions can modulate vegetation resilience.

    In this study, we investigated how moderate but repetitive desiccation events, caused by the combined effects of drought and high temperatures, affect cordgrass (Spartina alterniflora), the dominant habitat‐forming grass in southeasternUSsalt marshes. In a 4‐month field experiment, we simulated four consecutive desiccation events by periodically excluding tidal flooding and rainfall, while raising temperature. We crossed this desiccation treatment with the presence/absence of ribbed mussels (Geukensia demissa) – a mutualist of cordgrass known to enhance its desiccation resilience – and with grazing pressure by the marsh periwinkle (Littoraria irrorata) that is known to suppress cordgrass’ desiccation resilience.

    We found that each subsequent desiccation event deteriorated sediment porewater conditions, resulting in high salinity (53 ppt), low pH‐levels (3.7) and increased porewater Al and Fe concentrations (≈800 μmol/L and ≈1,500 μmol/L) upon rewetting. No effects on porewater chemistry were found as a result of snail grazing, while ribbed mussels strongly mitigated desiccation effects almost to control levels and increased cordgrass biomass by approximately 128%. Importantly, although cordgrass generally appeared healthy above‐ground at the end of the experiment, we found clear negative responses of the repetitive desiccation treatment on cordgrass below‐ground biomass, on proline (osmolyte) levels in shoots and on the number of tillers (−40%), regardless of mussel and/or snail presence.

    Synthesis. Even though the mutualism with mussels strongly mitigated chemical effects in the sediment porewater throughout the experiment, mussels could not buffer the adverse ecophysiological effects observed in cordgrass tissue. Our results therefore suggest that although mussels may alleviate desiccation stress, the predicted increased frequency and intensity of hot dry spells may eventually affect saltmarsh resilience by stressing the mutualism beyond its buffering capacity.

     
    more » « less
  3. Abstract Invasive consumers can cause extensive ecological damage to native communities but effects on ecosystem resilience are less understood. Here, we use drone surveys, manipulative experiments, and mathematical models to show how feral hogs reduce resilience in southeastern US salt marshes by dismantling an essential marsh cordgrass-ribbed mussel mutualism. Mussels usually double plant growth and enhance marsh resilience to extreme drought but, when hogs invade, switch from being essential for plant survival to a liability; hogs selectively forage in mussel-rich areas leading to a 50% reduction in plant biomass and slower post-drought recovery rate. Hogs increase habitat fragmentation across landscapes by maintaining large, disturbed areas through trampling of cordgrass during targeted mussel consumption. Experiments and climate-disturbance recovery models show trampling alone slows marsh recovery by 3x while focused mussel predation creates marshes that may never recover from large-scale disturbances without hog eradication. Our work highlights that an invasive consumer can reshape ecosystems not just via competition and predation, but by disrupting key, positive species interactions that underlie resilience to climatic disturbances. 
    more » « less
  4. Abstract

    Interest in leveraging suspension feeders, such as marine bivalves, to exert top‐down control on organic matter (OM) loading in estuaries is gaining momentum. Not only can these faunal engineers alleviate the consequences of nutrient pollution, but they may also bolster the critical blue carbon services provided by coastal ecosystems—a potential dual, mitigating effect on cultural eutrophication and climate change. Ribbed mussels,Geukensia demissa, offer a useful model for assessing faunally driven carbon (C) and nitrogen (N) processes in these systems and their relationships with faunal density. Combining bulk geochemical analyses with Bayesian stable isotope mixing model frameworks (MixSIAR), we quantified the effect of mussels on the source and amount of organic C and N deposited to the benthic floor (i.e., sedimentation), accumulated in surface sediments, and stored in abovegroundSpartina alterniflorain Georgia salt marshes. Relative to areas without mussels, mussel presence shifted the source of deposited and accumulated OM to a more allochthonous makeup; amplified the amount of deposited, but not accumulated, allochthonous and autochthonous OM; and enhanced aboveground storage of C and N. Both sources of OM accumulated in sediments as well as standing stocks of C and N were highly and positively correlated with local mussel density (ind. m−2) but unrelated to neighboring mussel density (ind. ∼25 m−2) in adjacent, non‐mussel areas. This work provides new evidence that suspension feeders, through their faunal engineering activities, can interact powerfully and synergistically with primary producers to enhance the blue carbon services of marshes and counteract coastal eutrophication.

     
    more » « less
  5. Abstract

    Human‐altered shorelines make up approximately 14% of the coastline in the United States, with consequences for marsh ecosystems ranging from altered physical and biological variables, to direct loss of intertidal marsh habitat, to diminished land–sea connectivity. Trophically transmitted parasites that require connectivity between upland host species and marsh host species to complete their complex lifecycles could be particularly sensitive to the effects of shoreline alterations. They can additionally respond to gradients in natural physical and biological factors, including the host communities, that are often sharp at the land–sea ecotone. Across 27 salt marshes over 45 km, we evaluated the effects of environmental variables and three types of land use (undeveloped; single‐house adjacent to the marsh with small‐scale shoreline armoring; and single‐house adjacent to the marsh without shoreline armoring), on infection prevalence and intensity of the trematodeMicrophallus basodactylophallusin its second intermediate crab host,Minuca pugnax. The first intermediate hosts ofM. basodactylophallusare Hydrobiid snail species that are obligate marsh residents, while the definitive hosts are terrestrial rodents and raccoons. Thus, trematode transmission must depend on cross‐boundary movement by the definitive hosts. We found that although there was a trend of lower infection prevalence at undeveloped forested sites, there was no significant effect of adjacent land development on infection prevalence or intensity. Instead host, biotic and abiotic factors were correlated with infection; namely, largerM. pugnaxhad higher prevalence and intensity ofMbasodactylophallus, and higher soil moisture and lower density of the ribbed mussel (Geukensia demissa) were associated with increasedM. basodactylophallusprevalence. The small, indirect influence of upland development suggests that movement of definite hosts across the ecotone may be largely unaffected. Further, the robust trematode levels signify the ecosystem and the species interactions, upon which its complex lifecycle depends, are largely intact.

     
    more » « less