skip to main content


Title: High thermal tolerance in high-elevation species and laboratory-reared colonies of tropical bumble bees
Bumble bees are key pollinators with some species reared in captivity at a commercial scale, but with significant evidence of population declines and with alarming predictions of substantial impacts under climate change scenarios. While studies on the thermal biology of temperate bumble bees are still limited, they are entirely absent from the tropics where the effects of climate change are expected to be greater. Herein, we test whether bees' thermal tolerance decreases with elevation and whether the stable optimal conditions used in laboratory-reared colonies reduces their thermal tolerance. We assessed changes in the lower (CTMin) and upper (CTMax) critical thermal limits of four species at two elevations (2600 and 3600 m) in the Colombian Andes, examined the effect of body size, and evaluated the thermal tolerance of wild-caught and laboratory-reared individuals of Bombus pauloensis. We also compiled information on bumble bees' thermal limits and assessed potential predictors for broadscale patterns of variation. We found that CTMin decreased with increasing elevation, while CTMax was similar between elevations. CTMax was slightly higher (0.84°C) in laboratory-reared than in wild-caught bees while CTMin was similar, and CTMin decreased with increasing body size while CTMax did not. Latitude is a good predictor for CTMin while annual mean temperature, maximum and minimum temperatures of the warmest and coldest months are good predictors for both CTMin and CTMax. The stronger response in CTMin with increasing elevation, and similar CTMax, supports Brett's heat-invariant hypothesis, which has been documented in other taxa. Andean bumble bees appear to be about as heat tolerant as those from temperate areas, suggesting that other aspects besides temperature (e.g., water balance) might be more determinant environmental factors for these species. Laboratory-reared colonies are adequate surrogates for addressing questions on thermal tolerance and global warming impacts.  more » « less
Award ID(s):
1950805
NSF-PAR ID:
10453045
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Ecology and evolution
Volume:
12
ISSN:
2045-7758
Page Range / eLocation ID:
e9560
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tropical pollinators are expected to experience substantial effects due to climate change, but aspects of their thermal biology remain largely unknown. We investigated the thermal tolerance of stingless honey-making bees, the most ecologically, economically and culturally important group of tropical pollinators. We assessed changes in the lower (CTMin) and upper (CTMax) critical thermal limits of 17 species (12 genera) at two elevations (200 and 1500 m) in the Colombian Andes. In addition, we examined the influence of body size (intertegular distance, ITD), hairiness (thoracic hair length) and coloration (lightness value) on bees’ thermal tolerance. Because stingless beekeepers often relocate their colonies across the altitudinal gradient, as an initial attempt to explore potential social responses to climatic variability, we also tracked for several weeks brood temperature and humidity in nests of three species at both elevations. We found that CTMin decreased with elevation while CTMax was similar between elevations. CTMin and CTMax increased (low cold tolerance and high heat tolerance) with increasing ITD, hair length and lightness value, but these relationships were weak and explained at most 10% of the variance. Neither CTMin nor CTMax displayed significant phylogenetic signal. Brood nest temperature tracked ambient diel variations more closely in the low-elevation site, but it was constant and higher at the high-elevation site. In contrast, brood nest humidity was uniform throughout the day regardless of elevation. The stronger response in CTMin, and a similar CTMax between elevations, follows a pattern of variation documented across a wide range of taxa that is commonly known as the Brett’s heat-invariant hypothesis. Our results indicate differential thermal sensitivities and potential thermal adaptations to local climate, which support ongoing conservation policies to restrict the long-distance relocations of colonies. They also shed light on how malleable nest thermoregulation can be across elevations. 
    more » « less
  2. Abstract

    Commercialized bumble bees (Bombus) are primary pollinators of several crops within open field and greenhouse settings. However, the common eastern bumble bee (Bombus impatiens Cresson, 1863) is the only species widely available for purchase in North America. As an eastern species, concerns have been expressed over their transportation outside of their native range. Therefore, there is a need to identify regionally appropriate candidates for commercial crop pollination services, especially in the western U.S.A. In this study, we evaluated the commercialization potential of brown-belted bumble bees (Bombus griseocollis De Geer, 1773), a broadly distributed species throughout the U.S.A., by assessing nest initiation and establishment rates of colonies produced from wild-caught gynes, creating a timeline of colony development, and identifying lab-reared workers’ critical thermal maxima (CTMax) and lethal temperature (ecological death). From 2019 to 2021, 70.6% of the wild-caught B. griseocollis gynes produced brood in a laboratory setting. Of these successfully initiated nests, 74.8% successfully established a nest (produced a worker), providing guidance for future rearing efforts. Additionally, lab-reared workers produced from wild-caught B. griseocollis gynes had an average CTMax of 43.5°C and an average lethal temperature of 46.4°C, suggesting B. griseocollis can withstand temperatures well above those commonly found in open field and greenhouse settings. Overall, B. griseocollis should continue to be evaluated for commercial purposes throughout the U.S.A.

     
    more » « less
  3. Leppla, Norman (Ed.)
    Abstract

    Bombus vosnesenskii Radowszkowski, 1862 is one of three bumble bee species commercially available for pollination services in North America; however, little is documented about B. vosnesenskii colony life cycle or the establishment of ex situ rearing, mating, and overwintering practices. In this study, we documented nest success, colony size, and gyne production; recorded the duration of mating events; assessed overwintering survival of mated gynes; and evaluated second-generation nest success for colonies established from low- and high-elevation wild-caught B. vosnesenskii gynes. Of the 125 gynes installed, 62.4% produced brood cells (nest initiation) and 43.2% had at least 1 worker eclose (nest establishment). High-elevation B. vosnesenskii gynes had significantly higher nest initiation and establishment success than low-elevation gynes. However, low-elevation colonies were significantly larger with queens producing more gynes on average. Mating was recorded for 200 low-elevation and 37 high-elevation gynes, resulting in a mean duration of 62 and 51 min, respectively. Mated gynes were then placed into cold storage for 54 days to simulate overwintering, which resulted in 59.1% of low-elevation gynes surviving and 91.9% of high-elevation gynes surviving. For second-generation low-elevation gynes, 26.4% initiated nesting and 14.3% established nesting. Second-generation high-elevation gynes did not initiate nesting despite CO2 narcosis treatments. Overall, these results increase our understanding of B. vosnesenskii nesting, mating, and overwintering biology from 2 elevations. Furthermore, this study provides information on successful husbandry practices that can be used by researchers and conservationists to address knowledge gaps and enhance the captive rearing of bumble bees.

     
    more » « less
  4. 1. Thermal tolerance has a strong predictive power for understanding the ecology and distribution of organisms, as well as their responses to changes in land use and global warming. However, relatively few studies have assessed thermal tolerances for bees.

    2. The present study aimed to determine whether the critical thermal maximum (CTmax) of carpenter bees (Apidae: genusXylocopaLatreille) varies with different patterns of foraging activity and elevation. In addition, the influence of body size, body water content and relative age was examined with respect to their CTmaxand differences in thoracic temperature (Tth) among species were evaluated.

    3. The CTmaxof one crepuscular (Xylocopaolivieri) and two diurnal species (XylocopaviolaceaandXylocopairis) of carpenter bees was assessed at sea level on the Greek island of Lesvos. To detect variation as a result of elevation, the CTmaxof a population ofX. violaceaat 625 m.a.s l. was assessed and compared with that from sea level.

    4.Xylocopa olivieridisplayed a similar CTmaxto that ofX. violaceabut lower than that ofX. iris. Body size, body water content, and relative age did not affect CTmax. InX. violacea, CTmaxdecreased with elevation and all three species have highTthindependent of ambient temperatures.

    5. The results of the present study are consistent with variations in CTmaxpredicted by broad spatial and temporal patterns reported for other insects, including honey and bumble bees. The implications of the results are discussed aiming to understand the differences in the foraging pattern of these bees.

     
    more » « less
  5. Abstract

    Global temperature changes have emphasized the need to understand how species adapt to thermal stress across their ranges. Genetic mechanisms may contribute to variation in thermal tolerance, providing evidence for how organisms adapt to local environments. We determine physiological thermal limits and characterize genome-wide transcriptional changes at these limits in bumble bees using laboratory-rearedBombus vosnesenskiiworkers. We analyze bees reared from latitudinal (35.7–45.7°N) and altitudinal (7–2154 m) extremes of the species’ range to correlate thermal tolerance and gene expression among populations from different climates. We find that critical thermal minima (CTMIN) exhibit strong associations with local minimums at the location of queen origin, while critical thermal maximum (CTMAX) was invariant among populations. Concordant patterns are apparent in gene expression data, with regional differentiation following cold exposure, and expression shifts invariant among populations under high temperatures. Furthermore, we identify several modules of co-expressed genes that tightly correlate with critical thermal limits and temperature at the region of origin. Our results reveal that local adaptation in thermal limits and gene expression may facilitate cold tolerance across a species range, whereas high temperature responses are likely constrained, both of which may have implications for climate change responses of bumble bees.

     
    more » « less