skip to main content


Title: Curved Ring Origami: Bistable Elastic Folding for Magic Pattern Reconfigurations
Abstract Ring origami has emerged as a robust strategy for designing foldable and deployable structures due to its impressive packing abilities achieved from the snap-folding mechanism. In general, polygonal rings with rationally designed geometric parameters can fold into compacted three-loop configurations with curved segments, which result from the internal bending moment in the folded state. Inspired by the internal bending moment-induced curvature in the folded state, we explore how this curvature can be tuned by introducing initial natural curvature to the segments of the polygonal rings in their deployed stress-free state, and study how this initial curvature affects their folded configurations. Taking a clue from straight-segmented polygonal rings that fold into overlapping curved loops, we find it is possible to reverse the process by introducing curvature into the ring segments in the stress-free initial state such that the rings fold into a straight-line looped pattern with “zero” area. This realizes extreme packing. In this work, by a combination of experimental observation, finite element analysis, and theoretical modeling, we systematically study the effect of segment curvature on folding behavior, folded configurations, and packing of curved ring origami with different geometries. It is anticipated that curved ring origami can open a new avenue for the design of foldable and deployable structures with simple folded configurations and high packing efficiency.  more » « less
Award ID(s):
2201344
NSF-PAR ID:
10453047
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Applied Mechanics
ISSN:
0021-8936
Page Range / eLocation ID:
1 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Multistable structures have widespread applications in the design of deployable aerospace systems, mechanical metamaterials, flexible electronics, and multimodal soft robotics due to their capability of shape reconfiguration between multiple stable states. Recently, the snap-folding of rings, often in the form of circles or polygons, has shown the capability of inducing diverse stable configurations. The natural curvature of the rod segment (curvature in its stress-free state) plays an important role in the elastic stability of these rings, determining the number and form of their stable configurations during folding. Here, we develop a general theoretical framework for the elastic stability analysis of segmented rings (e.g., polygons) based on an energy variational approach. Combining this framework with finite element simulations, we map out all planar stable configurations of various segmented rings and determine the natural curvature ranges of their multistable states. The theoretical and numerical results are validated through experiments, which demonstrate that a segmented ring with a rectangular cross-section can show up to six distinct planar stable states. The results also reveal that, by rationally designing the segment number and natural curvature of the segmented ring, its one- or multiloop configuration can store more strain energy than a circular ring of the same total length. We envision that the proposed strategy for achieving multistability in the current work will aid in the design of multifunctional, reconfigurable, and deployable structures.

     
    more » « less
  3. Rigid origami, with applications ranging from nano-robots to unfolding solar sails in space, describes when a material is folded along straight crease line segments while keeping the regions between the creases planar. Prior work has found explicit equations for the folding angles of a flat-foldable degree-4 origami vertex and some cases of degree-6 vertices. We extend this work to generalized symmetries of the degree-6 vertex where all sector angles equal 60 ∘ . We enumerate the different viable rigid folding modes of these degree-6 crease patterns and then use second-order Taylor expansions and prior rigid folding techniques to find algebraic folding angle relationships between the creases. This allows us to explicitly compute the configuration space of these degree-6 vertices, and in the process we uncover new explanations for the effectiveness of Weierstrass substitutions in modelling rigid origami. These results expand the toolbox of rigid origami mechanisms that engineers and materials scientists may use in origami-inspired designs. 
    more » « less
  4. Abstract Origami has emerged as a powerful mechanism for designing functional foldable and deployable structures. Among various origami patterns, a large class of origami exhibits rotational symmetry, which possesses the advantages of elegant geometric shapes, axisymmetric contraction/expansion, and omnidirectional deployability, etc. Due to these merits, origami with rotational symmetry has found widespread applications in various engineering fields such as foldable emergency shelters, deformable wheels, deployable medical stents, and deployable solar panels. To guide the rational design of origami-based deployable structures and functional devices, numerous works in recent years have been devoted to understanding the geometric designs and mechanical behaviors of rotationally symmetric origami. In this review, we classify origami structures with rotational symmetry into three categories according to the dimensional transitions between their deployed and folded states as three-dimensional to three-dimensional, three-dimensional to two-dimensional, and two-dimensional to two-dimensional. Based on these three categories, we systematically review the geometric designs of their origami patterns and the mechanical behaviors during their folding motions. We summarize the existing theories and numerical methods for analyzing and designing these origami structures. Also, potential directions and future challenges of rotationally symmetric origami mechanics and applications are discussed. This review can provide guidelines for origami with rotational symmetry to achieve more functional applications across a wide range of length scales. 
    more » « less
  5. Abstract With specific fold patterns, a 2D flat origami can be converted into a complex 3D structure under an external driving force. Origami inspires the engineering design of many self-assembled and re-configurable devices. This work aims to apply the level set-based topology optimization to the generative design of origami structures. The origami mechanism is simulated using thin shell models where the deformation on the surface and the deformation in the normal direction can be simplified and well captured. Moreover, the fold pattern is implicitly represented by the boundaries of the level set function. The folding topology is optimized by minimizing a new multiobjective function that balances kinematic performance with structural stiffness and geometric requirements. Besides regular straight folds, our proposed model can mimic crease patterns with curved folds. With the folding curves implicitly represented, the curvature flow is utilized to control the complexity of the folds generated. The performance of the proposed method is demonstrated by the computer generation and physical validation of two thin shell origami designs. 
    more » « less