skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Previous exposure mediates the response of eelgrass to future warming via clonal transgenerational plasticity
Abstract Mortality and shifts in species distributions are among the most obvious consequences of extreme climatic events. However, the sublethal effects of an extreme event can have persistent impacts throughout an individual’s lifetime and into future generations via within‐generation and transgenerational phenotypic plasticity. These changes can either confer resilience or increase susceptibility to subsequent stressful events, with impacts on population, community, and potentially ecosystem processes. Here, we show how a simulated extreme warming event causes persistent changes in the morphology and growth of a foundation species (eelgrass,Zostera marina) across multiple clonal generations and multiple years. The effect of previous parental exposure to warming increased aboveground biomass, shoot length, and aboveground–belowground biomass ratios while also greatly decreasing leaf growth rates. Long‐term increases in aboveground–belowground biomass ratios could indicate an adaptive clonal transgenerational response to warmer climates that reduces the burden of increased respiration in belowground biomass. These transgenerational responses were likely decoupled from clonal parent provisioning as rhizome size of clonal offspring was standardized at planting and rhizome starch reserves were not impacted by warming treatments. Future investigations into potential epigenetic mechanisms underpinning such clonal transgenerational plasticity will be necessary to understand the resilience of asexual foundation species to repeated extreme climatic events.  more » « less
Award ID(s):
1829976
PAR ID:
10453170
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
101
Issue:
12
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate‐driven ecosystem shifts occur through turnover in the foundation species which structure the landscape. Therefore, to predict the fate of areas undergoing climate‐driven ecosystem shifts, one approach is to characterize ecological and evolutionary responses of foundation species along dynamic environmental gradients. One such gradient is the ecotone between tidal marshes and maritime forests in coastal areas of the US Mid‐Atlantic region where accelerated sea‐level rise and coastal storms of increased frequency and intensity are driving forest dieback and inland marsh migration. Mid‐Atlantic tidal marshes are structured by marsh grasses which act as foundation species, and these grasses exhibit trait variation across their distribution from established marsh interior to their inland migration front. We conducted a reciprocal transplant experiment withSpartina patens, a dominant high marsh grass and foundation species, between established populations in the high marsh and range edge populations in the forest understory at three Mid‐Atlantic sites. We monitored environmental conditions in marsh and forest understory habitats, measured plant traits (above‐ and belowground biomass, specific leaf area, leaf N and C concentrations) in transplanted and reference non‐transplanted individuals, and used microsatellite markers to determine the genetic identity of transplants to quantify clonality between habitats and sites. Individuals transplanted into the forest understory exhibited a plastic shift in resource allocation to aboveground structures associated with light acquisition, with shifts in transplants making them more morphologically similar to reference individuals sampled from the forest habitat. Clonal diversity and genetic distance among transplants were relatively high at two of three sites, but individuals at all sites exhibited trans‐habitat plasticity regardless of clonal diversity or a lack thereof. Individuals grown in the forest understory showed lower vegetative and reproductive fitness. Nevertheless, the trait plasticity exhibited by this species allowed individuals from the forest that were transplanted into the marsh to recoup significant biomass in only a single growing season. We predict high plasticity will facilitate the persistence of colonizingS. patensindividuals under suboptimal forest shade conditions until forest dieback increases light availability, ultimately promoting continued inland migration of this foundation species under sea‐level rise. 
    more » « less
  2. Abstract PremiseWhile many studies have measured the aboveground responses of plants to mycorrhizal fungi at a single time point, little is known about how plants respond belowground or across time to mycorrhizal symbiosis. By measuring belowground responses and growth over time in many plant species, we create a more complete picture of how mycorrhizal fungi benefit their hosts. MethodsWe grew 26 prairie plant species with and without mycorrhizal fungi and measured 14 functional traits to assess above‐ and belowground tissue quality and quantity responses and changes in resource allocation. We used function‐valued trait (FVT) modeling to characterize changes in species growth rate when colonized. ResultsWhile aboveground biomass responses were positive, the response of traits belowground were much more variable. Changes in aboveground biomass accounted for 60.8% of the variation in mycorrhizal responses, supporting the use of aboveground biomass response as the primary response trait. Responses belowground were not associated with aboveground responses and accounted for 18.3% of the variation. Growth responses over time were highly variable across species. Interestingly, none of the measured responses were phylogenetically conserved. ConclusionsMycorrhizal fungi increase plant growth in most scenarios, but the effects of these fungi belowground and across time are more complicated. This study highlights how differences in plant allocation priorities might affect how they utilize the benefits from mycorrhizal fungi. Identifying and characterizing these differences is a key step to understanding the effects of mycorrhizal mutualisms on whole plant physiology. 
    more » « less
  3. Abstract Increased nutrient inputs due to anthropogenic activity are expected to increase primary productivity across terrestrial ecosystems, but changes in allocation aboveground versus belowground with nutrient addition have different implications for soil carbon (C) storage. Thus, given that roots are major contributors to soil C storage, understanding belowground net primary productivity (BNPP) and biomass responses to changes in nutrient availability is essential to predicting carbon–climate feedbacks in the context of interacting global environmental changes. To address this knowledge gap, we tested whether a decade of nitrogen (N) and phosphorus (P) fertilization consistently influenced aboveground and belowground biomass and productivity at nine grassland sites spanning a wide range of climatic and edaphic conditions in the continental United States. Fertilization effects were strong aboveground, with both N and P addition stimulating aboveground biomass at nearly all sites (by 30% and 36%, respectively, on average). P addition consistently increased root production (by 15% on average), whereas other belowground responses to fertilization were more variable, ranging from positive to negative across sites. Site‐specific responses to P were not predicted by the measured covariates. Atmospheric N deposition mediated the effect of N fertilization on root biomass and turnover. Specifically, atmospheric N deposition was positively correlated with root turnover rates, and this relationship was amplified with N addition. Nitrogen addition increased root biomass at sites with low N deposition but decreased it at sites with high N deposition. Overall, these results suggest that the effects of nutrient supply on belowground plant properties are context dependent, particularly with regard to background N supply rates, demonstrating that site conditions must be considered when predicting how grassland ecosystems will respond to increased nutrient loading from anthropogenic activity. 
    more » « less
  4. Abstract Coastal marshes are globally important, carbon dense ecosystems simultaneously maintained and threatened by sea‐level rise. Warming temperatures may increase wetland plant productivity and organic matter accumulation, but temperature‐modulated feedbacks between productivity and decomposition make it difficult to assess how wetlands and their thick, organic‐rich soils will respond to climate warming. Here, we actively increased aboveground plant‐surface and belowground soil temperatures in two marsh plant communities, and found that a moderate amount of warming (1.7°C above ambient temperatures) consistently maximized root growth, marsh elevation gain, and belowground carbon accumulation. Marsh elevation loss observed at higher temperatures was associated with increased carbon mineralization and increased microtopographic heterogeneity, a potential early warning signal of marsh drowning. Maximized elevation and belowground carbon accumulation for moderate warming scenarios uniquely suggest linkages between metabolic theory of individuals and landscape‐scale ecosystem resilience and function, but our work indicates nonpermanent benefits as global temperatures continue to rise. 
    more » « less
  5. Abstract Adaptive evolution and phenotypic plasticity will fuel resilience in the geologically unprecedented warming and acidification of the earth’s oceans, however, we have much to learn about the interactions and costs of these mechanisms of resilience. Here, using 20 generations of experimental evolution followed by three generations of reciprocal transplants, we investigated the relationship between adaptation and plasticity in the marine copepod,Acartia tonsa, in future global change conditions (high temperature and high CO2). We found parallel adaptation to global change conditions in genes related to stress response, gene expression regulation, actin regulation, developmental processes, and energy production. However, reciprocal transplantation showed that adaptation resulted in a loss of transcriptional plasticity, reduced fecundity, and reduced population growth when global change-adapted animals were returned to ambient conditions or reared in low food conditions. However, after three successive transplant generations, global change-adapted animals were able to match the ambient-adaptive transcriptional profile. Concurrent changes in allele frequencies and erosion of nucleotide diversity suggest that this recovery occurred via adaptation back to ancestral conditions. These results demonstrate that while plasticity facilitated initial survival in global change conditions, it eroded after 20 generations as populations adapted, limiting resilience to new stressors and previously benign environments. 
    more » « less