skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Salt Marsh Pond Biogeochemistry Changes Hourly‐to‐Yearly but Does Not Scale With Dimensions or Geospatial Position
Abstract Shallow ponds are expanding in many salt marshes with potential impacts on ecosystem functioning. Determining how pond characteristics change over time and scale with physical dimensions and other spatial predictors could facilitate incorporation of ponds into projections of ecosystem change. We evaluated scaling relationships across six differently sized ponds in three regions of the high marshes within the Plum Island Ecosystems‐Long Term Ecological Research site (MA, USA). We further characterized diel fluctuations in surface water chemistry in two ponds to understand short‐term processes that affect emergent properties (e.g., habitat suitability). Primary producers drove oxygen levels to supersaturation during the day, while nighttime respiration resulted in hypoxic to anoxic conditions. Diel swings in oxygen were mirrored by pH and resulted in successive shifts in redox‐sensitive metabolisms, as indicated by nitrate consumption at dusk followed by peaks in ammonium and then sulfide overnight. Abundances of macroalgae andRuppia maritimacorrelated with whole‐pond oxygen metabolism rates, but not with surface area (SA), volume (V), or SA:V. Moreover, there were no clear patterns in primary producer abundances, surface water chemistry, or pond metabolism rates across marsh regions supplied by different tidal creeks or that differed in distance to upland borders or creekbanks. Comparisons with data from 2 years prior demonstrate that plant communities and biogeochemical processes are not in steady state. Factors contributing to variability between ponds and years are unclear but likely include infrequent tidal exchange. Temporal and spatial variability and the absence of scaling relationships complicate the integration of high marsh ponds into ecosystem biogeochemical models.  more » « less
Award ID(s):
1637630
PAR ID:
10453172
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
125
Issue:
10
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Salt marsh ponds expand and deepen over time, potentially reducing ecosystem carbon storage and resilience. The water filled volumes of ponds represent missing carbon due to prevented soil accumulation and removal by erosion and decomposition. Removal mechanisms have different implications as eroded carbon can be redistributed while decomposition results in loss. We constrained ponding effects on carbon dynamics in a New England marsh and determined whether expansion and deepening impact nearby soils by conducting geochemical characterizations of cores from three ponds and surrounding high marshes and models of wind‐driven erosion. Radioisotope profiles demonstrate that ponds are not depositional environments and that contemporaneous marsh accretion represents prevented accumulation accounting for 32%–42% of the missing carbon. Erosion accounted for 0%–38% and was bracketed using radioisotope inventories and wind‐driven resuspension models. Decomposition, calculated by difference, removes 22%–68%, and when normalized over pond lifespans, produces rates that agree with previous metabolism measurements. Pond surface soils contain new contributions from submerged primary producers and evidence of microbial alteration of underlying peat, as higher levels of detrital biomarkers and thermal stability indices, compared to the marsh. Below pond surface horizons, soil properties and organic matter composition were similar to the marsh, indicating that ponding effects are shallow. Soil bulk density, elemental content, and accretion rates were similar between marsh sites but different from ponds, suggesting that lateral effects are spatially confined. Consequently, ponds negatively impact ecosystem carbon storage but at current densities are not causing pervasive degradation of marshes in this system. 
    more » « less
  2. Abstract Interior marsh pond formation has been commonly observed in tidal marshes affected by high rates of relative sea level rise (RSLR). However, it is difficult to conclude whether an accretion deficit (accretion which does not keep pace with RSLR) or natural ice and wrack disturbance has driven pond formation. We propose that marsh deterioration caused by accretion deficit can be differentiated from that caused by other disturbances based upon temporal vegetation changes and the spatial configuration of vegetation zones relative to tidal creeks and the marsh platform. We tested this hypothesis in six newly ponded sites within RSLR‐affected marshes in Deal Island, Chesapeake Bay. At each site, we used field surveys and remote sensing to study spatiotemporal dynamics of marsh vegetation, marsh topography, and tidal creek incision. We found flood tolerant plants displaced flood intolerant species over time in the landward direction, or upslope, of ponds. A reverse species transition was observed seaward of ponds because tidal creek incision alleviated interior marsh inundation. The landscape‐scale biogeographic pattern we have recognized sheds light on how plants adapt to chronically reshaped geomorphological configurations of the marsh platform, which differentiates ponding caused by accretion deficit from ponding caused by natural and artificial disturbances. Furthermore, our results point to vegetation patterns that can be used as early warning signals of interior marsh loss to ponding. As ponding has been a major driver of tidal marsh habitat loss in microtidal marshes around the world, early indicators of decline are sorely needed to direct conservation activities. 
    more » « less
  3. Abstract Ponds are often identified by their small size and shallow depths, but the lack of a universal evidence-based definition hampers science and weakens legal protection. Here, we compile existing pond definitions, compare ecosystem metrics (e.g., metabolism, nutrient concentrations, and gas fluxes) among ponds, wetlands, and lakes, and propose an evidence-based pond definition. Compiled definitions often mentioned surface area and depth, but were largely qualitative and variable. Government legislation rarely defined ponds, despite commonly using the term. Ponds, as defined in published studies, varied in origin and hydroperiod and were often distinct from lakes and wetlands in water chemistry. We also compared how ecosystem metrics related to three variables often seen in waterbody definitions: waterbody size, maximum depth, and emergent vegetation cover. Most ecosystem metrics (e.g., water chemistry, gas fluxes, and metabolism) exhibited nonlinear relationships with these variables, with average threshold changes at 3.7 ± 1.8 ha (median: 1.5 ha) in surface area, 5.8 ± 2.5 m (median: 5.2 m) in depth, and 13.4 ± 6.3% (median: 8.2%) emergent vegetation cover. We use this evidence and prior definitions to define ponds as waterbodies that are small (< 5 ha), shallow (< 5 m), with < 30% emergent vegetation and we highlight areas for further study near these boundaries. This definition will inform the science, policy, and management of globally abundant and ecologically significant pond ecosystems. 
    more » « less
  4. Abstract Sea level rise (SLR) is threatening coastal marshes, leading to large‐scale marsh loss in several micro‐tidal systems. Early recognition of marsh vulnerability to SLR is critical in these systems to aid managers to take appropriate restoration or mitigation measures. However, it is not clear if current marsh vulnerability indicators correctly assess long‐term stability of the marsh system. In this study, two indicators of marsh stress were studied: (i) the skewness of the marsh elevation distribution, and (ii) the abundance of codominant species in mixtures. We combined high‐precision elevation measurements (GPS), LiDAR imagery, vegetation surveys and water level measurements to study these indicators in an organogenic micro‐tidal system (Blackwater River, Maryland, USA), where large‐scale historical conversion from marshes to shallow ponds resulted in a gradient of increasing marsh loss. The two indicators reveal increasingly stressed marshes along the marsh loss gradient, but suggest that the field site with the most marsh loss seems to experience less stress. For the latter site, previous research indicates that wind waves generated on interior marsh ponds contribute to lateral erosion of surrounding marsh edges and hence marsh loss. The eroded marsh sediment might temporarily provide the remaining marshes with the necessary sediment to keep up with relative SLR. However, this is only a short‐term alleviation, as lateral marsh edge erosion and sediment export lead to severe marsh loss in the long term. Our findings indicate that marsh elevation skewness and the abundance of codominant species in mixtures can be used to supplement existing marsh stress indicators, but that additional indices such as fetch length and the sediment budget should be included to account for lateral marsh erosion and sediment export and to correctly assess long‐term stability of micro‐tidal marshes. © 2020 John Wiley & Sons, Ltd. 
    more » « less
  5. As a symptom of accelerated sea level rise and historic impacts to tidal hydrology from agricultural and mosquito control activities, coastal marshes in the Northeastern U.S. are experiencing conversion to open water through edge loss, widening and headward erosion of tidal channels, and the formation and expansion of interior ponds. These interior ponds often form in high elevation marsh, confounding the notion applied in predictive modeling that salt marshes convert to open water when elevation falls below a critical surface inundation threshold. The installation of tidal channel extension features, or runnels, is a technique that has been implemented to reduce water levels and permit vegetation reestablishment in drowning coastal marshes, although there are limited data available to recommend its advisability. We report on 5 years of vegetation and hydrologic monitoring of two locations where a total of 600-m of shallow (0.15–0.30-m in diameter and depth) runnels were installed in 2015 and 2016 to enhance drainage, in the Pettaquamscutt River Estuary, in southern Rhode Island, United States. Results from this Before-After Control-Impact (BACI) designed study found that runnel installation successfully promoted plant recolonization, although runnels did not consistently promote increases in high marsh species presence or diversity. Runnels reduced the groundwater table (by 0.07–0.12 m), and at one location, the groundwater table experienced a 2-fold increase in the fraction of the in-channel tidal range that was observed in the marsh water table. We suggest that restoration of tidal hydrology through runnel installation holds promise as a tool to encourage revegetation and extend the lifespan of drowning coastal marshes where interior ponds are expanding. In addition, our study highlights the importance of considering the rising groundwater table as an important factor in marsh drowning due to expanding interior ponds found on the marsh platform. 
    more » « less