skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Early Results and Validation of FORMOSAT‐7/COSMIC‐2 Space Weather Products: Global Ionospheric Specification and Ne‐Aided Abel Electron Density Profile
Abstract The FORMOSAT‐7/COSMIC‐2 (F7/C2) satellite mission was launched on 25 June 2019 with six low‐Earth‐orbit satellites and can provide thousands of daily radio occultation (RO) soundings in the low‐latitude and midlatitude regions. This study shows the preliminary results of space weather data products based on F7/C2 RO sounding: global ionospheric specification (GIS) electron density and Ne‐aided Abel and Abel electron density profiles. GIS is the ionospheric data assimilation product based on the Gauss‐Markov Kalman filter, assimilating the ground‐based Global Positioning System and space‐based F7/C2 RO slant total electron content, providing continuous global three‐dimensional electron density distribution. The Ne‐aided Abel inversion implements four‐dimensional climatological electron density constructed from previous RO observations, which has the advantage of providing altitudinal information on the horizontal gradient to reduce the retrieval error due to the spherical symmetry assumption of the Abel inversion. The comparisons show that climatological structures are consistent with each other above 300 km altitude. Both the Abel electron density profiles and GIS detect electron density variations during a minor geomagnetic storm that occurred within the study period. Moreover, GIS is further capable of reconstructing the variation of equatorial ionization anomaly crests. Detailed validations of all the three products are carried out using manually scaled digisondeNmF2(hmF2), yielding correlation coefficients of 0.885 (0.885) for both Abel inversions and 0.903 (0.862) for GIS. The results show that both GIS and Ne‐aided Abel are reliable products in studying ionosphere climatology, with the additional advantage of GIS for space weather research and day‐to‐day variations.  more » « less
Award ID(s):
1848544
PAR ID:
10453190
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
10
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract FORMOSAT-3/COSMIC (F3/C) constellation of six micro-satellites was launched into the circular low-earth orbit at 800 km altitude with a 72-degree inclination angle on 15 April 2006, uniformly monitoring the ionosphere by the GPS (Global Positioning System) Radio Occultation (RO). Each F3/C satellite is equipped with a TIP (Tiny Ionospheric Photometer) observing 135.6 nm emissions and a TBB (Tri-Band Beacon) for conducting ionospheric tomography. More than 2000 RO profiles per day for the first time allows us globally studying three-dimensional ionospheric electron density structures and formation mechanisms of the equatorial ionization anomaly, middle-latitude trough, Weddell/Okhotsk Sea anomaly, etc. In addition, several new findings, such as plasma caves, plasma depletion bays, etc., have been reported. F3/C electron density profiles together with ground-based GPS total electron contents can be used to monitor, nowcast, and forecast ionospheric space weather. The S4 index of GPS signal scintillations recorded by F3/C is useful for ionospheric irregularities monitoring as well as for positioning, navigation, and communication applications. F3/C was officially decommissioned on 1 May 2020 and replaced by FORMOSAT-7/COSMIC-2 (F7/C2). F7/C2 constellation of six small satellites was launched into the circular low-Earth orbit at 550 km altitude with a 24-degree inclination angle on 25 June 2019. F7/C2 carries an advanced TGRS (Tri Gnss (global navigation satellite system) Radio occultation System) instrument, which tracks more than 4000 RO profiles per day. Each F7/C2 satellite also has a RFB (Radio Reference Beacon) on board for ionospheric tomography and an IVM (Ion Velocity Meter) for measuring ion temperature, velocity, and density. F7/C2 TGRS, IVM, and RFB shall continue to expand the F3/C success in the ionospheric space weather forecasting. 
    more » « less
  2. Low Earth orbit (LEO) radio occultation|radio occultations (RO) constellations can provide global electron density profiles (EDPs) to better specify and forecast the ionosphere‐thermosphere (I‐T) system. To inform future RO constellation design, this study uses comprehensive Observing System Simulation Experiments (OSSEs) to assess the ionospheric specification impact of assimilating synthetic EDPs into a coupled I‐T model. These OSSEs use 10 different sets of RO constellation configurations containing 6 or 12 LEO satellites with base orbit parameter combinations of 520 or 800 km altitude, and 24° or 72° inclination. The OSSEs are performed using the Ensemble Adjustment Kalman Filter implemented in the data assimilation (DA) Research Testbed and the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM). A different I‐T model is used for the nature run, the Whole Atmosphere Model‐Ionosphere Plasmasphere Electrodynamics (WAM‐IPE), to simulate the period of interest is the St. Patrick's Day storm on March 13–18, 2015. Errors from models and EDP retrieval are realistically accounted for in this study through distinct I‐T models and by retrieving synthetic EDPs through an extension Abel inversion algorithm. OSSE assessment, using multiple metrics, finds that greater EDP spatial coverage leading to improved specification at altitudes 300 km and above, with the 520 km altitude constellations performing best due to yielding the highest observation counts. A potential performance limit is suggested with two 6‐satellite constellations. Lastly, close examination of Abel inversion error impacts highlights major EDP limitations at altitudes below 200 km and dayside equatorial regions with large horizontal gradients and low electron density magnitudes. 
    more » « less
  3. Abstract The semidiurnal tidal spectrum in the F‐region ionosphere obtained from hourly COSMIC‐2 Global Ionospheric Specification (GIS) data assimilation is greatly (>50%) enhanced during the January 2021 Sudden Stratospheric Warming (SSW). Moreover, the semidiurnal migrating tidal response in topside electron densities closely follows the day‐to‐day changes of the 10 hPa, 60°N zonal wind from MERRA‐2 during the SSW. The response is similar in the northern and southern crests of the Equatorial Ionization Anomaly (EIA) but persists toward higher magnetic latitudes and the EIA trough. A slight phase shift toward earlier local times is consistent with theoretical expectations of an E‐region dynamo driving and agrees with semidiurnal tidal diagnostics of MIGHTI/ICON zonal winds at 105 km. COSMIC‐2 GIS are the first data set to resolve the tidal weather of the ionosphere on a day‐to‐day basis and, therefore, provide a new perspective on space weather variability driven by lower and middle atmosphere dynamics. 
    more » « less
  4. Abstract Specification and forecast of ionospheric parameters, such as ionospheric electron density (Ne), have been an important topic in space weather and ionospheric research. Neural networks (NNs) emerge as a powerful modeling tool forNeprediction. However, heavy manual adjustments are time consuming to determine the optimal NN structures. In this work, we propose to use neural architecture search (NAS), an automatic machine learning method, to mitigate this problem. NAS aims to find the optimal network structure through the alternate optimization of the hyperparameters and the corresponding network parameters within a pre‐defined hyperparameter search space. A total of 16‐year data from Millstone Hill incoherent scatter radar (ISR) are used for the NN models. One single‐layer NN (SLNN) model and one deep NN (DNN) model are both trained with NAS, namely SLNN‐NAS and DNN‐NAS, forNeprediction and compared with their manually tuned counterparts (SLNN and DNN) based on previous studies. Our results show that SLNN‐NAS and DNN‐NAS outperformed SLNN and DNN, respectively. These NN predictions ofNedaily variation patterns reveal a 27‐day mid‐latitude topsideNevariation, which cannot be reasonably represented by traditional empirical models developed using monthly averages. DNN‐NAS yields the best prediction accuracy measured by quantitative metrics and rankings of daily pattern prediction, especially with an improvement in mean absolute error more than 10% compared to the SLNN model. The limited improvement of NAS is likely due to the network complexity and the limitation of fully connected NN without the time histories of input parameters. 
    more » « less
  5. Abstract Global Navigation Satellite System (GNSS) Radio Occultation (RO) missions, such as the Formosa Satellite‐3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT‐3/COSMIC) and the upcoming FORMOSAT‐7/COSMIC‐2, provide valuable profiling of the ionized atmosphere for the monitoring of space weather. This study shows that the FORMOSAT‐3/COSMIC and FORMOSAT‐7/COSMIC‐2 missions' ability to monitor highly variable ionospheric weather can be considerably extended with the help of data assimilation. The Gridpoint Statistical Interpolation (GSI) Ionosphere is a new data assimilation system designed specifically for the low‐latitude and midlatitude ionosphere. The capability of the GSI Ionosphere is first demonstrated with actual FORMOSAT‐3/COSMIC RO total electron content (TEC) data for January 2013. Features of the ionospheric equatorial ionization anomaly in a coupled plasmasphere ionosphere thermosphere model become more consistent with the TEC maps created with independent ground‐based GPS data. The consistency has improved by assimilation of FORMOSAT‐3/COSMIC RO data up to about 50% in comparison to the control simulation case without data assimilation. To evaluate the impact of future RO missions on ionospheric weather specification, comparative Observing System Simulation Experiments (OSSEs) are carried out with synthetic RO TEC data. An OSSE of FORMOSAT‐7/COSMIC‐2 shows that the GSI Ionosphere can improve the ionospheric specification within ±30° geomagnetic latitude by 67% over the control case, which is comparable to the improvement yielded by FORMOSAT‐3/COSMIC for 2009 (61%). These results indicate a great potential for improving the monitoring of realistic ionospheric weather with the help of FORMOSAT‐7/COSMIC‐2 RO TEC data. 
    more » « less