skip to main content

This content will become publicly available on December 1, 2023

Title: Retrospect and prospect of ionospheric weather observed by FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2
Abstract FORMOSAT-3/COSMIC (F3/C) constellation of six micro-satellites was launched into the circular low-earth orbit at 800 km altitude with a 72-degree inclination angle on 15 April 2006, uniformly monitoring the ionosphere by the GPS (Global Positioning System) Radio Occultation (RO). Each F3/C satellite is equipped with a TIP (Tiny Ionospheric Photometer) observing 135.6 nm emissions and a TBB (Tri-Band Beacon) for conducting ionospheric tomography. More than 2000 RO profiles per day for the first time allows us globally studying three-dimensional ionospheric electron density structures and formation mechanisms of the equatorial ionization anomaly, middle-latitude trough, Weddell/Okhotsk Sea anomaly, etc. In addition, several new findings, such as plasma caves, plasma depletion bays, etc., have been reported. F3/C electron density profiles together with ground-based GPS total electron contents can be used to monitor, nowcast, and forecast ionospheric space weather. The S4 index of GPS signal scintillations recorded by F3/C is useful for ionospheric irregularities monitoring as well as for positioning, navigation, and communication applications. F3/C was officially decommissioned on 1 May 2020 and replaced by FORMOSAT-7/COSMIC-2 (F7/C2). F7/C2 constellation of six small satellites was launched into the circular low-Earth orbit at 550 km altitude with a 24-degree inclination angle on 25 June 2019. F7/C2 carries an more » advanced TGRS (Tri Gnss (global navigation satellite system) Radio occultation System) instrument, which tracks more than 4000 RO profiles per day. Each F7/C2 satellite also has a RFB (Radio Reference Beacon) on board for ionospheric tomography and an IVM (Ion Velocity Meter) for measuring ion temperature, velocity, and density. F7/C2 TGRS, IVM, and RFB shall continue to expand the F3/C success in the ionospheric space weather forecasting. « less
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Terrestrial, Atmospheric and Oceanic Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The FORMOSAT‐7/COSMIC‐2 (F7/C2) satellite mission was launched on 25 June 2019 with six low‐Earth‐orbit satellites and can provide thousands of daily radio occultation (RO) soundings in the low‐latitude and midlatitude regions. This study shows the preliminary results of space weather data products based on F7/C2 RO sounding: global ionospheric specification (GIS) electron density and Ne‐aided Abel and Abel electron density profiles. GIS is the ionospheric data assimilation product based on the Gauss‐Markov Kalman filter, assimilating the ground‐based Global Positioning System and space‐based F7/C2 RO slant total electron content, providing continuous global three‐dimensional electron density distribution. The Ne‐aided Abel inversion implements four‐dimensional climatological electron density constructed from previous RO observations, which has the advantage of providing altitudinal information on the horizontal gradient to reduce the retrieval error due to the spherical symmetry assumption of the Abel inversion. The comparisons show that climatological structures are consistent with each other above 300 km altitude. Both the Abel electron density profiles and GIS detect electron density variations during a minor geomagnetic storm that occurred within the study period. Moreover, GIS is further capable of reconstructing the variation of equatorial ionization anomaly crests. Detailed validations of all the three products are carried out using manuallymore »scaled digisondeNmF2(hmF2), yielding correlation coefficients of 0.885 (0.885) for both Abel inversions and 0.903 (0.862) for GIS. The results show that both GIS and Ne‐aided Abel are reliable products in studying ionosphere climatology, with the additional advantage of GIS for space weather research and day‐to‐day variations.

    « less
  2. Abstract

    Slant absolute total electron content (TEC) is observed by the Formosa Satellite‐7/Constellation Observing System for Meteorology, Ionosphere, and Climate‐2 (FORMOSAT‐7/COSMIC‐2, F7/C2) Tri‐GNSS Radio Occultation System (TGRS) instrument. We present details of the data processing algorithms, validation, and error assessment for the F7/C2 global positioning system (GPS) absolute TEC observations. The data processing includes estimation and application of solar panel dependent pseudorange multipath maps, phase to pseudorange leveling, and estimation of separate L1C‐L2C and L1C‐L2P receiver differential code biases. We additionally perform a validation of the F7/C2 GPS absolute TEC observations through comparison with colocated, independent, TEC observations from the Swarm‐B satellite. Based on this comparison, we conclude that the accuracy of the F7/C2 GPS absolute TEC observations is less than 3.0 TEC units. Results are also presented that illustrate the suitability of the F7/C2 GPS absolute TEC observations for studying the climatology and variability of the topside ionosphere and plasmasphere (i.e., altitudes above the F7/C2 orbit of550 km). These results demonstrate that F7/C2 provides high quality GPS absolute TEC observations that can be used for ionosphere‐thermosphere data assimilation as well as scientific studies of the topside ionosphere and plasmasphere.

  3. Abstract

    The Formosa Satellite‐7/Constellation Observing System for Meteorology, Ionosphere, and Climate‐2 (FORMOSAT‐7/COSMIC‐2, F7/C2) Tri‐GNSS Radio Occultation System observes both Global Positioning System (GPS) and GLObalnaya NAvigazionnaya Sputnikovaya Sistema (GLONASS) slant total electron content (TEC). Space‐based TEC observations have historically relied on GPS signals, and the processing methodologies and data quality of GLONASS absolute TEC observations are thus less well established. We present a description of the differences in the processing for the F7/C2 GLONASS absolute TEC observations. This primarily entails estimation of a paired receiver‐transmitter differential code bias, which is needed due to the GLONASS usage of frequency‐division multiple access. We additionally perform a validation of the F7/C2 GLONASS absolute TEC observations through comparison with colocated F7/C2 GPS absolute TEC observations. Based on this comparison, we estimate the GLONASS absolute TEC error to be ∼2.6 TEC units (TECU), which is similar to previous estimates of the F7/C2 GPS absolute TEC error (∼2.5 TECU). This demonstrates that the F7/C2 GLONASS absolute TEC observations are generally similar in quality to the F7/C2 GPS absolute TEC observations, and are suitable for use by the operational and scientific communities.

  4. We compare the random error statistics (uncertainties) of COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate, C1) and COSMIC-2 (C2) radio occultation (RO) bending angles and refractivities for the months of August 2006 and 2021 over the tropics and subtropics using the three-cornered hat method. The uncertainty profiles are similar for the two RO missions in the troposphere. However, a higher percentage of C2 profiles reach close to the surface in the moisture-rich tropics, an advantage of the higher signal-to-noise ratio (SNR) in C2. C2 uses signals from both GPS (Global Positioning System) and GLONASS Global Navigation System Satellites (GNSS). The GPS occultations show smaller uncertainties in the stratosphere and lower mesosphere (30–60 km) than the GLONASS occultations, a result of more accurate GPS clocks. Therefore, C2 (GPS) uncertainties are smaller than C1 uncertainties between 30–60 km while the C2 (GLONASS) uncertainties are larger than those of C1. The uncertainty profiles vary with latitude at all levels. We find that horizontal gradients in temperature and water vapor, and therefore refractivity, are the major cause of uncertainties in the tropopause region and troposphere through the violation of the assumption of spherical symmetry in the retrieval of bending angles and refractivity.
  5. Abstract

    We report on a new method to derive the on‐orbit electron density using the Tri Global Navigation Satellite System (GNSS) Radio‐occultation System (Tri‐GNSS Radio occultation System (TGRS)) differential total electron content data and compare it to the Constellation Observing System for Meteorology Ionosphere and Climate‐2 Ion Velocity Meter (IVM) ion density data. We found that the IVM ion density is about 8%–15% lower than the TGRS derived density at the insertion orbit (∼710 km) and 5% higher at the mission operation orbit (∼540 km) for reasons that are currently unknown. Using a linear coefficient, we scaled the IVM data to remove the offset between TGRS‐derived electron density and the IVM ion density for the two orbital heights. We believe the scaled IVM densities eliminate any inter‐spacecraft discrepancy, making the IVM data suitable for use in high precision multi‐satellite scientific investigations of longitudinal and local time variations of non‐migrating tides, planetary waves and space weather operational applications.