Coupling of organic and inorganic chemistry presents a new degree of freedom in nano-engineering of thermo-mechanical properties of cement-based materials. Despite these vast technological benefits, molecular scale cross-linking of calcium-silicate-hydrate (C-S-H) gel with organic molecules still presents a significant challenge. Herein, we report experimental results on sol-gel synthesis, structure and morphology of nanocrystalline C-S-H cross-linked with dipodal organosilanes. These novel organic-inorganic gels have layered turbostratic molecular structure with similarities to C-S-H precipitating in hydrating cement paste. The organic molecules' chain length controls the interlayer spacing, which shows little to no shrinkage upon dehydration up to 105 °C. However, the structure gets distorted in the basal crystallite plane, in which dimer and trimer Si-polyhedra structures condense on a 2D hexagonal Ca-polyhedra layer. Cross-linked C-S-H gels display plate-like morphology with tendency toward stacking into agglomerates at the larger scale. If successfully realized in cement environment, e.g. high concentration seed, such novel organic-inorganic C-S-H gels could potentially provide cement-based matrices with unique properties unmatched by classical inorganic systems.
more »
« less
Calcium phosphate nanocomposites via in situ mineralization in block copolymer hydrogels
Significant research has been directed toward producing composites that mimic the micro‐ to nanoscale structure of bone tissue, and it remains a challenge to develop synthetic strategies to create cost‐effective biocomposite materials with nanoscale inorganic domains. In this paper, we report the synthesis of nanocrystalline calcium phosphate minerals in situ in gels of a commercially available block copolymer, Pluronic F127 (F127). Although solutions of F127 have previously been explored as a templating agent for calcium phosphate mineralization, here we demonstrate the synthesis of nano‐sized calcium hydrogen phosphate hydrate directly in F127 gels. Composites formed at pH 7 contained highly crystalline, millimeter‐scale crystals of brushite, while composites created at an initial pH of 11 contained nanoscale particles of a calcium hydrogen phosphate hydrate similar to natural bone apatite in morphology and size, with a mean particle diameter of 120 nm. The in situ composites have storage moduli of 15–25 kPa, which is comparable to mechanically processed hydrogel composites containing four times more inorganic material. We believe that our synthetic strategy may provide a new class of versatile and cost‐effective nanostructured biomaterials for use in understanding and replicating mineralized tissues.
more »
« less
- Award ID(s):
- 1922639
- PAR ID:
- 10453231
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Polymers for Advanced Technologies
- Volume:
- 32
- Issue:
- 3
- ISSN:
- 1042-7147
- Page Range / eLocation ID:
- p. 1372-1379
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The development of algal biorefineries is strongly associated with the nutrient management, particularly phosphorus, which is a limited mineral resource. Flash hydrolysis (FH) has been widely applied to a variety of algae species to fractionate its constituents. This chemical-free, subcritical water technique was used to extract more than 80 wt % of phosphorus available in the Scenedesmus sp. as water-soluble phosphates in the aqueous phase (hydrolysate). The phosphate-rich hydrolysate was subjected to the hydrothermal mineralization (HTM) process at 280 °C and 5–90 min of residence time to mineralize phosphates as allotropes of calcium phosphate such as hydroxyapatite (HAp) and whitlockite (WH). In the current study, the effect of reaction time on phosphate mineralization from the hydrolysate as well as the composition, structure and the morphology of the precipitates were studied. Calcium hydroxide and commercial HAp were used as the mineralizer and seeding material, respectively. More than 97 wt % of phosphate and almost 94 wt % of calcium were removed in the first 5 min of the HTM process. Results revealed that as the HTM reaction time increased, calcium phosphate precipitates transformed from WH to carbonated HAp. The integration of the proposed mineralization process with FH can be a cost-effective pathway to produce sustainable, and high value phosphate-based bioproducts from algae. The application of HAp includes biomedical applications such as synthetic bone and implant filling, drug delivery, chromatography, corrosion resistance materials, catalytic activities and fertilizers.more » « less
-
Native and biomimetic DNA structures have been demonstrated to impact materials synthesis under a variety of conditions but have only just begun to be explored in this role compared to other biopolymers such as peptides, proteins, polysaccharides, and glycopolymers. One selected DNA aptamer has been explored in calcium phosphate and calcium carbonate mineralization, demonstrating sequence-dependent control of kinetics, morphology, and crystallinity. This aptamer is here applied to a biologically-relevant bone model system that uses collagen hydrogels. In the presence of the aptamer, intrafibrillar collagen mineralization is observed compared to negative controls and a positive control using well-studied poly-aspartic acid. The mechanism of interaction is explored through affinity measurements, kinetics of calcium uptake, and kinetics of aptamer uptake into the forming mineral. There is a marked difference observed between the selected aptamer containing a G-quadruplex secondary structure compared to a control sequence with no G-quadruplex. It is hypothesized that the equilibrium interaction of the aptamer with calcium-phosphate precursors and with the collagen itself leads to slow kinetic mineral formation and a morphology appropriate to bone. This points to new uses for DNA aptamers in biologically-relevant mineralization systems and the possibility of future biomedical applications.more » « less
-
Abstract Hexagonal boron nitride (h‐BN) is a layered inorganic synthetic crystal exhibiting high temperature stability and high thermal conductivity. As a ceramic material it has been widely used for thermal management, heat shielding, lubrication, and as a filler material for structural composites. Recent scientific advances in isolating atomically thin monolayers from layered van der Waals crystals to study their unique properties has propelled research interest in mono/few layeredh‐BN as a wide bandgap insulating support for nanoscale electronics, tunnel barriers, communications, neutron detectors, optics, sensing, novel separations, quantum emission from defects, among others. Realizing these futuristic applications hinges on scalable cost‐effective high‐qualityh‐BN synthesis. Here, the authors review scalable approaches of high‐quality mono/multilayerh‐BN synthesis, discuss the challenges and opportunities for each method, and contextualize their relevance to emerging applications. Maintaining a stoichiometric balance B:N = 1 as the atoms incorporate into the growing layered crystal and maintaining stacking order between layers during multi‐layer synthesis emerge as some of the main challenges forh‐BN synthesis and the development of processes to address these aspects can inform and guide the synthesis of other layered materials with more than one constituent element. Finally, the authors contextualizeh‐BN synthesis efforts along with quality requirements for emerging applications via a technological roadmap.more » « less
-
null (Ed.)The use of microwave irradiation for the synthesis of inorganic nanomaterials has recently become a widespread area of research that continues to expand in scope and specialization. The growing demand for nanoscale materials with composition and morphology tailored to specific applications requires the development of facile, repeatable, and scalable synthetic routes that offer a high degree of control over the reaction environment. Microwave irradiation provides unique advantages for developing such routes through its direct interaction with active reaction species, which promotes homogeneous heat distribution, increased reaction rates, greater product quality and yield, and use of mild reaction conditions. Many catalytic nanomaterials such as noble metal nanoparticles and intricate nanocomposites have very limited synthetic routes due to their extreme temperature sensitivity and difficulty achieving homogeneous growth. This work presents recent advances in the use of MW irradiation methods to produce high-quality nanoscale composites with controlled size, morphology, and architecture.more » « less