skip to main content


Search for: All records

Award ID contains: 1922639

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Lipid droplets (LDs) are dynamic organelles that contain an oil core mainly composed of triglycerides (TAG) that is surrounded by a phospholipid monolayer and LD-associated proteins called perilipins (PLINs). During LD biogenesis, perilipin 3 (PLIN3) is recruited to nascent LDs as they emerge from the endoplasmic reticulum. Here, we analyze how lipid composition affects PLIN3 recruitment to membrane bilayers and LDs, and the structural changes that occur upon membrane binding. We find that the TAG precursors phosphatidic acid and diacylglycerol (DAG) recruit PLIN3 to membrane bilayers and define an expanded Perilipin-ADRP-Tip47 (PAT) domain that preferentially binds DAG-enriched membranes. Membrane binding induces a disorder to order transition of alpha helices within the PAT domain and 11-mer repeats, with intramolecular distance measurements consistent with the expanded PAT domain adopting a folded but dynamic structure upon membrane binding. In cells, PLIN3 is recruited to DAG-enriched ER membranes, and this requires both the PAT domain and 11-mer repeats. This provides molecular details of PLIN3 recruitment to nascent LDs and identifies a function of the PAT domain of PLIN3 in DAG binding.

     
    more » « less
  2. Abstract

    Three-dimensional bicontinuous porous materials formed by dealloying contribute significantly to various applications including catalysis, sensor development and energy storage. This work studies a method of molten salt dealloying via real-time in situ synchrotron three-dimensional X-ray nano-tomography. Quantification of morphological parameters determined that long-range diffusion is the rate-determining step for the dealloying process. The subsequent coarsening rate was primarily surface diffusion controlled, with Rayleigh instability leading to ligament pinch-off and creating isolated bubbles in ligaments, while bulk diffusion leads to a slight densification. Chemical environments characterized by X-ray absorption near edge structure spectroscopic imaging show that molten salt dealloying prevents surface oxidation of the metal. In this work, gaining a fundamental mechanistic understanding of the molten salt dealloying process in forming porous structures provides a nontoxic, tunable dealloying technique and has important implications for molten salt corrosion processes, which is one of the major challenges in molten salt reactors and concentrated solar power plants.

     
    more » « less
  3. Aqueous Zn/MnO 2 batteries with their environmental sustainability and competitive cost, are becoming a promising, safe alternative for grid-scale electrochemical energy storage. Presented as a promising design principle to deliver a higher theoretical capacity, this work offers fundamental understanding of the dissolution–deposition mechanism of Zn/β-MnO 2 . A multimodal synchrotron characterization approach including three operando X-ray techniques (powder diffraction, absorption spectroscopy, and fluorescence microscopy) is coupled with elementally resolved synchrotron X-ray nano-tomography. Together they provide a direct correlation between structural evolution, reaction chemistry, and 3D morphological changes. Operando synchrotron X-ray diffraction and spectroscopy show a crystalline-to-amorphous phase transition. Quantitative modeling of the operando data by Rietveld refinement for X-ray diffraction and multivariate curve resolution (MCR) for X-ray absorption spectroscopy are used in a complementary fashion to track the structural and chemical transitions of both the long-range (crystalline phases) and short-range (including amorphous phases) ordering upon cycling. Scanning X-ray microscopy and full-field nano-tomography visualizes the morphology of electrodes at different electrochemical states with elemental sensitivity to spatially resolve the formation of the Zn- and Mn-containing phases. Overall, this work critically indicates that for Zn/MnO 2 aqueous batteries, the reaction pathways involving Zn–Mn complex formation upon cycling become independent of the polymorphs of the initial electrode and sheds light on the interplay among structural, chemical, and morphological evolution for electrochemically driven phase transitions. 
    more » « less
    Free, publicly-accessible full text available June 14, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. Colloidal clay Laponite forms a variety of arrested states that display interesting aging behavior. Microrheology has been applied to Laponite-based glasses and gels, but few studies evaluate the influence of probe particle size. In this work, we report the dynamics and microrheology of Laponite-polymer dispersions during aging using passive microrheology with three different probe particle sizes. At early aging times, the neat Laponite dispersion forms an arrested state; the nature of this state (e.g., a repulsive glass or gel) has remained the subject of debate. The addition of polymer retards gelation and melts the arrested state. While this melting has been observed at the macroscale and has been attributed to a re-entrant transition of a repulsive glass to a liquid state, to our knowledge, it has not been observed at the microscale. The delay of the gelation time needed to form an arrested state was found to depend on the polymer concentration and could vary from ∼24 h for neat Laponite to seven days for some Laponite-polymer samples. Significant effects of probe particle sizes are observed from the mean-squared displacement (MSD) curves as small and intermediate probe particles show diffusive motion, while the motion of large particles is restricted. By examining the factor of ⟨Δ r 2 (τ)⟩ a, structural heterogeneity can be confirmed through the strong size-dependence displayed. Different MSD trends of probe particles are obtained at longer aging times, but no significant changes occur after 30 days of aging. Our microrheology results also reveal significant effects of probe particle size. 
    more » « less
  6. Abstract We report the thermoresponsive assembly and rheology of an amphiphilic thermosensitive graft copolymer, poly(ethylene glycol)-graft-(poly(vinyl caprolactam)- co -poly(vinyl acetate)) (commercial name Soluplus ® ), which has been investigated for potential biomedical applications. It has received attention due to is ability to solubilize hydrophobic drugs and for its thickening behavior close to body temperature. Through use of the synchrotron at Brookhaven National Lab, and collaboration with the department of energy, the nanoscale structure and properties can be probed in greater detail. Soluplus ® undergoes two structural changes as temperature is increased; the first, a concentration independent change where samples become turbid at 32 °C. Increasing the temperature further causes the formation of physically associated hydrogels. This sol-gel transition is concentration dependent and occurs at 32 °C for 40 wt% samples, and increases to 42 °C for 10 wt% samples. From variable temperature SAXS characterization micelles of 20–25 nm in radius can be seen and maintain their size and packing below 32 °C. A gradual increase in the aggregation of micelles corresponding to a thickening of the material is also observed. Close to and above the gelation temperature, micelles collapse and form a physically associated 3D network. A model is proposed to explain these physical effects, where the poly(vinyl caprolactam) group transitions from the hydrophilic corona at room temperature to the hydrophobic core as temperature is increased. 
    more » « less