skip to main content


Title: Autonomous in situ calibration of ion‐sensitive field effect transistor pH sensors
Abstract

Ion‐sensitive field effect transistor‐based pH sensors have been shown to perform well in high frequency and long‐term ocean sampling regimes. The Honeywell Durafet is widely used due to its stability, fast response, and characterization over a large range of oceanic conditions. However, potentiometric pH monitoring is inherently complicated by the fact that the sensors require careful calibration. Offsets in calibration coefficients have been observed when comparing laboratory to field‐based calibrations and prior work has led to the recommendation that an in situ calibration be performed based on comparison to discrete samples. Here, we describe our work toward a self‐calibration apparatus integrated into a SeapHOx pH, dissolved oxygen, and CTD sensor package. This Self‐Calibrating SeapHOx is capable of autonomously recording calibration values from a high quality, traceable, primary reference standard: equimolar tris buffer. The Self‐Calibrating SeapHOx's functionality was demonstrated in a 6‐d test in a seawater tank at Scripps Institution of Oceanography (La Jolla, California, U.S.A.) and was successfully deployed for 2 weeks on a shallow, coral reef flat (Lizard Island, Australia). During the latter deployment, the tris‐based self‐calibration using 15 on‐board samples exhibited superior reproducibility to the standard spectrophotometric pH‐based calibration using > 100 discrete samples. Standard deviations of calibration pH using tris ranged from 0.002 to 0.005 whereas they ranged from 0.006 to 0.009 for the standard spectrophotometric pH‐based method; the two independent calibration methods resulted in a mean pH difference of 0.008. We anticipate that the Self‐Calibrating SeapHOx will be capable of autonomously providing climate quality pH data, directly linked to a primary seawater pH standard, and with improvements over standard calibration techniques.

 
more » « less
Award ID(s):
1736905
NSF-PAR ID:
10453239
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
19
Issue:
2
ISSN:
1541-5856
Page Range / eLocation ID:
p. 132-144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Equimolal tris (2-amino-2-hydroxymethyl-propane-1,3-diol) buffer in artificialseawater is a well characterized and commonly used standard for oceanographic pH measurements. We evaluated the stability of tris pH when stored in purportedly gas-impermeable bags across a variety of experimental conditions, including bag type and storage in air vs. seawater over300 d. Bench-top spectrophotometric pH analysis revealed that the pH of tris stored in bags decreased at a rate of 0.0058±0.0011 yr−1 (mean slope ±95 % confidence interval of slope). The upper and lower bounds of expected pH change att=365 d, calculated using the averages and confidence intervals of slope and intercept of measured pH change vs. time data, were −0.0042 and −0.0076 from initial pH. Analyses of total dissolved inorganic carbonconfirmed that a combination of CO2 infiltration and/or microbialrespiration led to the observed decrease in pH. Eliminating the change in pH of bagged tris remains a goal, yet the rate of pH change is lower than many processes of interest and demonstrates the potential of bagged tris for sensor calibration and validation of autonomous in situ pH measurements. 
    more » « less
  2. Abstract

    This work describes a new, generally applicable method to comprehensively characterize the inorganic carbon system of aqueous solutions. The method requires only simple spectrophotometric measurements and is appropriate for not only open‐ocean seawater (where convenient assumptions and approximations may be made) but also the more challenging case of freshwaters. The overall approach is to (1) measure pH in the field at the time of sample collection and (2) measure sample pH, carbonate alkalinity (AC), and total alkalinity (AT) later in the laboratory. All required equipment is inexpensive and portable. The paired laboratory measurements of pH andACcan be used to obtain the concentration of total inorganic carbon (CT). ThisCTcan in turn be paired with the field pH measurements to comprehensively characterize carbon‐system parameters in the sampled water body at in situ conditions. To our knowledge, this method is the first to spectrophotometrically measureACand thus the first to completely characterizeCTand the carbon system of freshwaters using spectrophotometric measurements only. The concurrent measurements ofACandATcan also be used to partition alkalinity into its carbonate and noncarbonate components. This work additionally describes how to quantitatively correct for artifacts that may arise (especially in freshwater samples) from using HgCl2to halt respiration in sample bottles. The use of these methods is illustrated using samples collected from the Snake River (Idaho, USA) before and during the 2020 spring flow.

     
    more » « less
  3. Abstract

    Buffers of known quality for the calibration of seawater pHTmeasurements are not widely or commercially available. Although there exist published compositions for the 0.04 mol kg‐H2O−1equimolar buffer 2‐amino‐2‐hydroxymethyl‐1,3‐propanediol (TRIS)‐TRIS · H+in synthetic seawater, there are no explicit procedures that describe preparing this buffer to achieve a particular pHTwith a known uncertainty. Such a procedure is described here which makes use of easily acquired laboratory equipment and techniques to produce a buffer with a pHTwithin 0.006 of the published pHTvalue originally assigned by DelValls and Dickson (1998), 8.094 at 25°C. Such a buffer will be suitable for the calibration of pH measurements expected to fulfil the “weather” uncertainty goal of the Global Ocean Acidification Observation Network of 0.02 in pHT, an uncertainty goal appropriate to “identify relative spatial patterns and short‐term variation.”

     
    more » « less
  4. Educational research supports incorporating active engagement into K-12 education using authentic STEM experiences. While there are discipline-specific resources to provide students with such experiences, there are limited transdisciplinary opportunities that integrate engineering education and technological skill-building to contextualize core scientific concepts. Here, we present an adaptable module that integrates hands-on technology education and place-based learning to improve student understanding of key chemistry concepts as they relate to local environmental science. The module also supports disciplinary core ideas, practices, and cross-cutting concepts in accordance with the Next Generation Science Standards. We field-tested our module in three different high school courses: Chemistry, Oceanography and Advanced Placement Environmental Science at schools in Washington, USA. Students built spectrophotometric pH sensors using readily available electronic components and calibrated them with known pH reference standards. Students then used their sensors to measure the pH of local environmental water samples. Assessments showed significant improvement in content knowledge in all three courses relating to environmental relevance of pH, and to the design, use and environmental application of sensors. Students also reported increased self-confidence in the material, even when their content knowledge remained the same. These findings suggest that classroom sensor building and collection of environmental data increases student understanding and self-confidence by connecting chemistry concepts to local environmental settings. 
    more » « less
  5. Chi Fru, Ernest ; Chik, Alex ; Colwell, Fredrick ; Dittrich, Maria ; Engel, Annette ; Keenan, Sarah ; Meckenstock, Rainer ; Omelon, Christopher ; Purkamo, Lotta ; Weisener, Chris (Ed.)

    Roots are common features in basaltic lava tube caves on the island of Hawai‘i. For the past 50 years, new species of cave-adapted invertebrates, including cixiid planthoppers, crickets, thread-legged bugs, and spiders, have been discovered from root patches in lava tubes on different volcanoes and across variable climatic conditions. Assessing vegetation on the surface above lava tube passages, as well as genetic characterization of roots from within lava tubes, suggest that most roots belong to the native pioneer tree, ‘ōhi‘a lehua (Metrosideros polymorpha). Planthoppers are the primary consumers of sap at the base of the subsurface food web. However, root physicochemistry and rhizobiome microbial diversity and functional potential have received little attention. This study focuses on characterizing the ‘ōhi‘a rhizobiome, accessed from free-hanging roots inside lava tubes. Using these results, we can begin to evaluate the development and evolution of plant-microbe-invertebrate relationships.

    We explored lava tubes formed in flows of differing elevations and ages, from about 140 to 3000 years old, on Mauna Loa, Kīlauea, and Hualālai volcanoes on Hawai‘i Island. Invertebrate diversity was evaluated from root galleries and non-root galleries, in situ fluid physicochemistry was measured, and root and bare rock fluids (e.g., water, sap) were collected to determine major ion concentrations, as well as non-purgeable organic carbon (NPOC) and total nitrogen (TN) content. To verify root identity, DNA was extracted, and three sets of primers were used. After screening for onlyMetrosiderosspp., the V4 region of the 16S rRNA gene was sequenced and taxonomy was assigned.

    Root fluids were viscous and ranged in color from clear to yellow to reddish orange. Root fluids had 2X to 10X higher major ion concentrations compared to rock water. The average root NPOC and TN concentrations were 192 mg/L and 5.2 mg/L, respectively, compared to rock water that had concentrations of 6.8 mg/L and 1.8 mg/L, respectively. Fluids from almost 300 root samples had pH values that ranged from 2.2 to 5.6 (average pH 4.63) and were lower than rock water (average pH 6.39). Root fluid pH was comparable to soil pH from montane wet forests dominated by ‘ōhi‘a (Selmants et al. 2016), which can grow in infertile soil with pH values as low as 3.6. On Hawai‘i, rain water pH averages 5.2 at sea level and systematically decreases with elevation to pH 4.3 at 2500 m (Miller and Yoshinaga 2012), but root fluid pH did not correlate with elevation, temperature, relative humidity, inorganic and organic constituents, or age of flow. Root fluid acidity is likely due to concentrated organic compounds, sourced as root exudates, and this habitat is acidic for the associated invertebrates.

    From 62 root samples, over 66% were identified to the genusMetrosideros. A few other identifications of roots from lava tube systems where there had been extensive clear-cutting and ranching included monkey pod tree, coconut palm,Ficusspp., and silky oak.

    The 16S rRNA gene sequence surveys revealed that root bacterial communities were dominated by few groups, including Burkholderiaceae, as well as Acetobacteraceae, Sphingomonadaceae, Acidobacteriaceae, Gemmataceae, Xanthobacteraceae, and Chitinophagaceae. However, most of the reads could not be classified to a specific genus, which suggested that the rhizobiome harbor novel diversity. Diversity was higher from wetter climates. The root communities were distinct from those described previously from ‘ōhi‘a flowers and leaves (Junker and Keller 2015) and lava tube rocky surfaces (Hathaway et al. 2014) where microbial groups were specifically presumed capable of heterotrophy, methanotrophy, diazotrophy, and nitrification. Less can be inferred for the rhizobiome metabolism, although most taxa are likely aerobic heterotrophs. Within the Burkholderiaceae, there were high relative abundances of sequences affiliated with the genusParaburkholderia, which includes known plant symbionts, as well as the acidophilic generaAcidocellaandAcidisomafrom the Acetobacteraceae, which were retrieved predominately from caves in the oldest lava flows that also had the lowest root pH values. It is likely that the bacterial groups are capable of degrading exudates and providing nutritional substrates for invertebrate consumers that are not provided by root fluids (i.e., phloem) alone.

    As details about the biochemistry of ‘ōhi‘a have been missing, characterizing the rhizobiome from lava tubes will help to better understand potential plant-microbe-invertebrate interactions and ecological and evolutionary relationships through time. In particular, the microbial rhizobiome may produce compounds used by invertebrates nutritionally or that affect their behavior, and changes to the rhizobiome in response to environmental conditions may influence invertebrate interactions with the roots, which could be important to combat climate change effects or invasive species introductions.

     
    more » « less