skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vertebral pneumaticity is correlated with serial variation in vertebral shape in storks
ABSTRACT Birds and their ornithodiran ancestors are unique among vertebrates in exhibiting air‐filled sinuses in their postcranial bones, a phenomenon called postcranial skeletal pneumaticity. The factors that account for serial and interspecific variation in postcranial skeletal pneumaticity are poorly understood, although body size, ecology, and bone biomechanics have all been implicated as influencing the extent to which pneumatizing epithelia invade the skeleton and induce bone resorption. Here, I use high‐resolution computed‐tomography to holistically quantify vertebral pneumaticity in members of the neognath family Ciconiidae (storks), with pneumaticity measured as the relative volume of internal air space. These data are used to describe serial variation in extent of pneumaticity and to assess whether and how pneumaticity varies with the size and shape of a vertebra. Pneumaticity increases dramatically from the middle of the neck onwards, contrary to previous predictions that cervical pneumaticity should decrease toward the thorax to maintain structural integrity as the mass and bending moments of the neck increase. Although the largest vertebrae sampled are also the most pneumatic, vertebral size cannot on its own account for serial or interspecific variation in extent of pneumaticity. Vertebral shape, as quantified by three‐dimensional geometric morphometrics, is found to be significantly correlated with extent of pneumaticity, with elongate vertebrae being less pneumatic than craniocaudally short and dorsoventrally tall vertebrae. Considered together, the results of this study are consistent with the hypothesis that shape‐ and position‐specific biomechanics influence the amount of bone loss that can be safely tolerated. These results have potentially important implications for the evolution of vertebral morphology in birds and their extinct relatives.  more » « less
Award ID(s):
1902242
PAR ID:
10453289
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Anatomy
Volume:
238
Issue:
3
ISSN:
0021-8782
Page Range / eLocation ID:
p. 615-625
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In addition to having unique extra articulations on its vertebrae, the hero shrew (Scutisorex) is unusual in having almost twice as many lumbar vertebrae as other shrews of its size. Other than being noted in descriptive literature, this increase in vertebral number has received little attention; there has been no investigation of how it might reflect the elusive function of the highly modified Scutisorex spine. Comparisons of individual vertebrae and whole-column characteristics between Scutisorex and other large shrews are also lacking, despite the fact that such studies could give insight into i) function of particular vertebral regions in shrews with and without external vertebral modifications, and ii) developmental patterns driving regional proportions. We collected μCT scans and linear measurements of cervical, thoracic, and lumbar vertebrae in two species of Scutisorex and three other species of large shrews. We compared a variety of linear vertebra measurements, and trabecular bone characteristics of each centrum, across species. Further, using this combined suite of measurements, we executed principal coordinates analysis and segmented regression to detect unique vertebral regions in each taxon. Our results show that relative to other large shrews, Scutisorex has a shorter thoracic region and longer lumbar region, and, despite having more dorsal vertebrae than other species, does not have a proportionally longer body length. Regionalization signals vary within and across the five species, but generally suggest that functional regions may not correspond exactly with traditionally recognized anatomical regions of the column, and that the extended lumbar region in Scutisorex may afford it an additional functional region. 
    more » « less
  2. Tetrapods use their neck to move the head three-dimensionally, relative to the body and limbs. Fish lack this anatomical neck, yet during feeding many species elevate (dorsally rotate) the head relative to the body. Cranial elevation is hypothesized to result from the craniovertebral and cranial-most intervertebral joints acting as a neck, by dorsally rotating (extending). However, this has never been tested due to the difficulty of visualizing and measuring vertebral motion in vivo . I used X-ray reconstruction of moving morphology to measure three-dimensional vertebral kinematics in rainbow trout ( Oncorhynchus mykiss ) and Commerson's frogfish ( Antennarius commerson ) during feeding. Despite dramatically different morphologies, in both species dorsoventral rotations extended far beyond the craniovertebral and cranial intervertebral joints. Trout combine small (most less than 3°) dorsal rotations over up to a third of their intervertebral joints to elevate the neurocranium. Frogfish use extremely large (often 20–30°) rotations of the craniovertebral and first intervertebral joint, but smaller rotations occurred across two-thirds of the vertebral column during cranial elevation. Unlike tetrapods, fish rotate large regions of the vertebral column to rotate the head. This suggests both cranial and more caudal vertebrae should be considered to understand how non-tetrapods control motion at the head–body interface. 
    more » « less
  3. null (Ed.)
    Captive specimens in museum collections facilitate study of rare taxa, but the lifestyles, diets, and lifespans of captive animals differ from their wild counterparts. Trabecular bone architecture adapts to in vivo forces, and may reflect interspecific variation in ecology and behavior as well as intraspecific variation between captive and wild specimens. We compared trunk vertebrae bone microstructure in captive and wild xenarthran mammals to test the effects of ecology and captivity. We collected μCT scans of the last six presacral vertebrae in 13 fossorial, terrestrial, and suspensorial xenarthran species (body mass: 120 g to 35 kg). For each vertebra, we measured centrum length; bone volume fraction (BV.TV); trabecular number and mean thickness (Tb.Th); global compactness (GC); cross-sectional area; mean intercept length; star length distribution; and connectivity and connectivity density. Wild specimens have more robust trabeculae, but this varies with species, ecology, and pathology. Wild specimens of fossorial taxa (Dasypus) have more robust trabeculae than captives, but there is no clear difference in bone microstructure between wild and captive specimens of suspensorial taxa (Bradypus, Choloepus), suggesting that locomotor ecology influences the degree to which captivity affects bone microstructure. Captive Tamandua and Myrmecophaga have higher BV.TV, Tb.Th, and GC than their wild counterparts due to captivity-caused bone pathologies. Our results add to the understanding of variation in mammalian bone microstructure, suggest caution when including captive specimens in bone microstructure research, and indicate the need to better replicate the habitats, diets, and behavior of animals in captivity. 
    more » « less
  4. null (Ed.)
    Abstract One key evolutionary innovation that separates vertebrates from invertebrates is the notochord, a central element that provides the stiffness needed for powerful movements. Later, the notochord was further stiffened by the vertebrae, cartilaginous and bony elements, surrounding the notochord. The ancestral notochord is retained in modern vertebrates as intervertebral material, but we know little about its mechanical interactions with surrounding vertebrae. In this study, the internal shape of the vertebrae—where this material is found—was quantified in sixteen species of fishes with various body shapes, swimming modes, and habitats. We used micro-computed tomography to measure the internal shape. We then created and mechanically tested physical models of intervertebral joints. We also mechanically tested actual vertebrae of five species. Material testing shows that internal morphology of the centrum significantly affects bending and torsional stiffness. Finally, we performed swimming trials to gather kinematic data. Combining these data, we created a model that uses internal vertebral morphology to make predictions about swimming kinematics and mechanics. We used linear discriminant analysis (LDA) to assess the relationship between vertebral shape and our categorical traits. The analysis revealed that internal vertebral morphology is sufficient to predict habitat, body shape, and swimming mode in our fishes. This model can also be used to make predictions about swimming in fishes not easily studied in the lab, such as deep sea and extinct species, allowing the development of hypotheses about their natural behavior. 
    more » « less
  5. One key evolutionary innovation that separates vertebrates from invertebrates is the notochord, a central element that provides the stiffness needed for powerful movements. Later, the notochord was further stiffened by the vertebrae, cartilaginous, and bony elements, surrounding the notochord. The ancestral notochord is retained in modern vertebrates as intervertebral material, but we know little about its mechanical interactions with surrounding vertebrae. In this study, the internal shape of the vertebrae—where this material is found—was quantified in 16 species of fishes with various body shapes, swimming modes, and habitats. We used micro-computed tomography to measure the internal shape. We then created and mechanically tested physical models of intervertebral joints. We also mechanically tested actual vertebrae of five species. Material testing shows that internal morphology of the centrum significantly affects bending and torsional stiffness. Finally, we performed swimming trials to gather kinematic data. Combining these data, we created a model that uses internal vertebral morphology to make predictions about swimming kinematics and mechanics. We used linear discriminant analysis (LDA) to assess the relationship between vertebral shape and our categorical traits. The analysis revealed that internal vertebral morphology is sufficient to predict habitat, body shape, and swimming mode in our fishes. This model can also be used to make predictions about swimming in fishes not easily studied in the laboratory, such as deep sea and extinct species, allowing the development of hypotheses about their natural behavior. 
    more » « less