Abstract Monitoring soil nitrogen (N) dynamics in agroecosystems is foundational to soil health management and is critical for maximizing crop productivity in contrasting management systems. The newly established soil health indicator, autoclaved‐citrate extractable (ACE) protein, measures an organically bound pool of N. However, the relationship between ACE protein and other N‐related soil health indicators is poorly understood. In this study, ACE protein is investigated in relation to other soil N measures at four timepoints across a single growing season along a 33‐year‐old replicated eight‐system management intensity gradient located in southwest Michigan, USA. On average, polyculture perennial systems that promote soil health had two to four times higher (2–12 g kg−1higher) ACE protein concentrations compared to annual cropping and monoculture perennial systems. In addition, ACE protein fluctuated less than total soil N, NH4+‐N, and NO3−‐N across the growing season, which shows the potential for ACE protein to serve as a reliable indicator of soil health and soil organic N status. Furthermore, ACE protein was positively correlated with total soil N and NH4+‐N and negatively correlated with NO3−‐N at individual sampling timepoints across the management intensity gradient. In addition, ACE protein, measured toward the end of the growing season, showed a consistent and positive trend with yield across different systems. This study highlights the potential for ACE protein as an indicator of sustainable management practices, SOM cycling, and soil health and calls for more studies investigating its relationship with crop productivity.
more »
« less
Systems with greater perenniality and crop diversity enhance soil biological health
Abstract Soil health has received heightened interest because of its association with long‐term agricultural sustainability and ecological benefits, including soil carbon (C) accumulation. We examined the effects of crop diversity and perenniality on soil biological health and assessed impacts on mineralization and C stabilization processes across 10 systems including four no‐till annual row crops, two monoculture perennials, and four polyculture perennials. Crop diversity increased soil biological health in both annual and perennial systems. Rotated annuals with a cover crop increased permanganate oxidizable C (POXC) and soil organic matter relative to continuous corn (Zea maysL.). Perennial polycultures also had 88% and 23% greater mineralizable C relative to the annual and monoculture perennial systems, respectively. All polyculture perennials had significantly greater POXC relative to switchgrass (Panicum virgatumL.) and annual systems, with the exception of restored prairie. Of the systems assessed in this study, incorporating perennial polycultures into rotations is the most effective way to increase soil biological health and enhance C stabilization.
more »
« less
- Award ID(s):
- 1832042
- PAR ID:
- 10453291
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Agricultural & Environmental Letters
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2471-9625
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Surface albedo can affect the energy budget and subsequently cause localized warming or cooling of the climate. When we convert a substantial portion of lands to agriculture, land surface properties are consequently altered, including albedo. Through crop selection and management, one can increase crop albedo to obtain higher levels of localized cooling effects to mitigate global warming. Still, there is little understanding about how distinctive features of a cropping system may be responsible for elevated albedo and consequently for the cooling potential of cultivated lands. To address this pressing issue, we conducted seasonal measurements of surface reflectivity during five growing seasons on annual crops of corn-soybean–winter wheat (Zea mays L.- Glycine max L.Merrill—Triticum aestivum L.; CSW) rotations at three agronomic intensities, a monoculture of perennial switchgrass, and perennial polycultures of early successional and restored prairie grasslands. We found that crop-species, agronomic intensity, seasonality, and plant phenology had significant effects on albedo. The mean ± SD of albedo was highest in perennial crops of switchgrass (Panicum virgatum; 0.179 ± 0.04), intermediate in early successional crops (0.170 ± 0.04), and lowest in a reduced input corn systems with cover crops (0.154 ± 0.02). Thestrongest cooling potentials were found in soybean (−0.450 kg CO2e m−2yr−1) and switchgrass (−0.367 kg CO2e m−2yr−1), with up to −0.265 kg CO2e m−2yr−1of localized climate cooling annually provided by different agroecosystems. We also demonstrated how diverse ecosystems, leaf canopy, and agronomic practices can affect surface reflectivity and provide another potential nature-based solution for reducing global warming at localized scales.more » « less
-
Soil carbon (C) is a major driver of soil health, yet little is known regarding how sensitive measures of soil C shift temporally within a single growing season in response to short-term weather perturbations. Our study aimed to i) Examine how long-term management impacts soil C cycling and stability across a management intensity and plant biodiversity gradient and ii) Assess how sensitive soil health indicators change temporally over the course of a single growing season in response to recent weather patterns. Here we quantify a variety of sensitive soil C measures at four time points across the 2021 growing season at the W.K. Kellogg Biological Station’s Long Term Ecological Research Trial (LTER) located in southwest Michigan, USA. The eight systems sampled included four annual soybean ( Glycine max ) systems that ranged in management intensity (conventional, no-till, reduced input, and biologically-based), two perennial biofuel cropping systems (switchgrass ( Panicum virgatum) and hybrid poplars ( Populus nigra x P.maximowiczii )), and two unmanaged systems (early successional system and a mown but never tilled grassland). We found that unmanaged systems with increased perenniality enhanced mineralizable C (Min C) and permanganate oxidizable C (POXC) values. Additionally, all soil health indicators were found to be sensitive to changes in short-term weather perturbations over the course of the growing season. The implications of this study are threefold. First, this study assess indicators of labile and stable C pools over the course of the growing season and reflects the stability of soil C in different systems. Second, POXC, Min C, and ß-glucosidase (GLU) activity are sensitive soil health indicators that fluctuate temporally, which means that these soil health indicators could help elucidate the impact that weather patterns have on soil C dynamics. Lastly, for effective monitoring of soil C, sampling time and frequency should be considered for a comprehensive understanding of soil C cycling within a system.more » « less
-
Abstract Biofuel crops, including annuals such as maize (Zea maysL.), soybean [Glycine max(L.) Merr.], and canola (Brassica napusL.), as well as high‐biomass perennial grasses such as miscanthus (Miscanthus×giganteusJ.M. Greef & Deuter ex Hodkinson & Renvoiz), are candidates for sustainable alternative energy sources. However, large‐scale conversion of croplands to perennial biofuel crops could have substantial impacts on regional water, nutrient, and C cycles due to the longer growing seasons and differences in rooting systems compared with most annual crops. However, due to the limited tools available to nondestructively study the spatiotemporal patterns of root water uptake in situ at field scales, these differences in crop water use are not well known. Geophysical imaging tools such as electrical resistivity (ER) reveal changes in water content in the soil profile. In this study, we demonstrate the use of a novel coupled hydrogeophysical approach with both time domain reflectometry soil water content and ER measurements to compare root water uptake and soil properties of an annual crop rotation with the perennial grass miscanthus, across three growing seasons (2009–2011) in southwest Michigan, USA. We estimated maximum root depths to be between 1.2 and 2.2 m, with the vertical distribution of roots being notably deeper in 2009 relative to 2010 and 2011, likely due to the drought conditions during that first year. Modeled cumulative ET of both crops was underestimated (2–34%) relative to estimates obtained from soil water drawdown in prior studies but was found to be greater in the perennial grass than the annual crops, despite shallower modeled rooting depths in 2010 and 2011.more » « less
-
Plants serve as critical links between above- and below-ground microbial communitites, both influencing and being influenced by microbes in these two realms. Below-ground microbial communities are expected to respond to soil resource environments, which are mediated by the roots of plants that can, in turn, be influenced by the above-ground community of foliar endophytes. For instance, diverse plant communities deposit more, and more diverse, nutrients into the soil, and this deposition is often increased when foliar pathogens are removed. Differences in soil resources can alter soil microbial composition and phenotypes, including inhibitory capacity, resource use, and antibiotic resistance. In this work, we consider plots differing in plant richness and application of foliar fungicide, evaluating consequences on soil resource levels and root-associatedStreptomycesphenotypes. Soil carbon, nitrogen, phosphorus, potassium, and organic matter were greater in samples from polyculture than monoculture, yet this increase was surprisingly offset when foliar fungal communities were disrupted. We find thatStreptomycesphenotypes varied more between richness plots—with theStreptomycesfrom polyculture showing lower inhibitory capacity, altered resource-use profiles, and greater antibiotic resistance—than between subplots with/without foliar fungicide. Where foliar fungicide affected phenotypes, it did so differently in polyculture than in monoculture, for instance decreasing niche width and overlap in monoculture while increasing them in polyculture. No differences in phenotype were correlated with soil nutrient levels, suggesting the need for further research looking more closely at soil resource diversity and particular compounds that were found to differ between treatments.more » « less
An official website of the United States government
