skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Soft Robotic Manipulation System Capable of Stiffness Variation and Dexterous Operation for Safe Human–Machine Interactions
Abstract Soft robots have attracted great attention in the past decades owing to their unique flexibility and adaptability for accomplishing tasks via simple control strategies, as well as their inherent safety for interactions with humans and environments. Here, a soft robotic manipulation system capable of stiffness variation and dexterous operations through a remotely controlled manner is reported. The smart manipulation system consists of a soft omnidirectional arm, a dexterous multimaterial gripper, and a self‐powered human–machine interface (HMI) for teleoperation. The cable‐driven soft arm is made of soft elastomers and embedded with low melting point alloy as a stiffness‐tuning mechanism. The self‐powered HMI patches are designed based on the triboelectric nanogenerator that utilizes a sliding mode of tribo‐layers made of copper and polytetrafluoroethylene. The novel soft manipulation system has great potential for soft and remote manipulation and human machine interactions in a variety of applications from elderly care to surgical operation to agriculture harvesting.  more » « less
Award ID(s):
2024649
PAR ID:
10453361
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
6
Issue:
5
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Innovative human–machine interfaces (HMIs) have attracted increasing attention in the field of system control and assistive devices for disabled people. Conventional HMIs that are designed based on the interaction of physical movements or language communication are not effective or appliable to severely disabled users. Here, a breath‐driven triboelectric sensor is reported consisting of a soft fixator and two circular‐shaped triboelectric nanogenerators (TENGs) for self‐powered respiratory monitoring and smart system control. The sensor device is capable of effectively detecting the breath variation and generates responsive electrical signals based on different breath patterns without affecting the normal respiration. A breathing‐driven HMI system is demonstrated for severely disabled people to control electrical household appliances and shows an intelligent respiration monitoring system for emergence alarm. The new system provides the advantages of high sensitivity, good stability, low cost, and ease of use. This work will not only expand the development of the TENGs in self‐powered sensors, but also opens a new avenue to develop assistive devices for disabled people through innovation of advanced HMIs. 
    more » « less
  2. Abstract Soft robots have revolutionized machine interactions with humans and the environment to enable safe operations. The fixed morphology of these soft robots dictates their mechanical performance, including strength and stiffness, which limits their task range and applications. Proposed here are modular, reconfigurable soft robots with the capabilities of changing their morphology and adjusting their stiffness to perform versatile object handling and planar or spatial operational tasks. The reconfiguration and tunable interconnectivity between the elemental soft, pneumatically driven actuation units is made possible through integrated permanent magnets with coils. The proposed concept of attaching/detaching actuators enables these robots to be easily rearranged in various configurations to change the morphology of the system. While the potential for these actuators allows for arbitrary reconfiguration through parallel or serial connection on their four sides, we demonstrate here a configuration called ManusBot. ManusBot is a hand-like structure with digits and palm capable of individual actuation. The capabilities of this system are demonstrated through specific examples of stiffness modulation, variable payload capacity, and structure forming for enhanced and versatile object manipulation and operations. The proposed modular, soft robotic system with interconnecting capabilities significantly expands the versatility of operational tasks as well as the adaptability of handling objects of various shapes, sizes, and weights using a single system. 
    more » « less
  3. Abstract Wearable electronics revolutionize human–machine interfaces (HMIs) for robotic or prosthetic control. Yet, the challenge lies in eliminating conventional rigid and impermeable electronic components, such as batteries, while considering the comfort and usability of HMIs over prolonged periods. Herein, a self‐powered, flexible, and breathable HMI is developed based on piezoelectric sensors. This interface is designed to accurately monitor subtle changes in body and muscle movements, facilitating effective communication and control of robotic prosthetic hands for various applications. Utilizing engineered porous structures within the polymeric material, the piezoelectric sensor demonstrates a significantly enhanced sensitivity, flexibility, and permeability, highlighting its outstanding HMI applications. Furthermore, the developed control algorithm enables a single sensor to comprehensively control robotic hands. By successfully translating piezoelectric signals generated from bicep muscle movements into Morse Code, this HMI serves as an efficient communication device. Additionally, the process is demonstrated by illustrating the execution of the daily task of “drinking a cup of water” using the developed HMI to enable the control of a human‐interactive robotic prosthetic hand through the detection of bicep muscle movements. Such HMIs pave the way toward self‐powered and comfortable biomimetic systems, making a significant contribution to the future evolution of prosthetics. 
    more » « less
  4. null (Ed.)
    Traditional parallel-jaw grippers are insufficient for delicate object manipulation due to their stiffness and lack of dexterity. Other dexterous robotic hands often have bulky fingers, rely on complex time-varying cable drives, or are prohibitively expensive. In this paper, we introduce a novel low-cost compliant gripper with two centimeter-scaled 3-DOF delta robots using off-the-shelf linear actuators and 3D-printed soft materials. To model the kinematics of delta robots with soft compliant links, which diverge from typical rigid links, we train neural networks using a perception system. Furthermore, we analyze the delta robot’s force profile by varying the starting position in its workspace and measuring the resulting force from a push action. Finally, we demonstrate the compliance and dexterity of our gripper through six dexterous manipulation tasks involving small and delicate objects. Thus, we present the groundwork for creating modular multi-fingered hands that can execute precise and low-inertia manipulations. 
    more » « less
  5. We build a system that enables any human to control a robot hand and arm, simply by demonstrating motions with their own hand. The robot observes the human operator via a single RGB camera and imitates their actions in real-time. Human hands and robot hands differ in shape, size, and joint structure, and performing this translation from a single uncalibrated camera is a highly underconstrained problem. Moreover, the retargeted trajectories must effectively execute tasks on a physical robot, which requires them to be temporally smooth and free of self-collisions. Our key insight is that while paired human-robot correspondence data is expensive to collect, the internet contains a massive corpus of rich and diverse human hand videos. We leverage this data to train a system that understands human hands and retargets a human video stream into a robot hand-arm trajectory that is smooth, swift, safe, and semantically similar to the guiding demonstration. We demonstrate that it enables previously untrained people to teleoperate a robot on various dexterous manipulation tasks. Our low-cost, glove-free, marker-free remote teleoperation system makes robot teaching more accessible and we hope that it can aid robots that learn to act autonomously in the real world. 
    more » « less