skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities
Abstract

Tundra dominates two‐thirds of the unglaciated, terrestrial Arctic. Although this region has experienced rapid and widespread changes in vegetation phenology and productivity over the last several decades, the specific climatic drivers responsible for this change remain poorly understood. Here we quantified the effect of winter snowpack and early spring temperature conditions on growing season vegetation phenology (timing of the start, peak, and end of the growing season) and productivity of the dominant tundra vegetation communities of Arctic Alaska. We used daily remotely sensed normalized difference vegetation index (NDVI), and daily snowpack and temperature variables produced by SnowModel and MicroMet, coupled physically based snow and meteorological modeling tools, to (1) determine the most important snowpack and thermal controls on tundra vegetation phenology and productivity and (2) describe the direction of these relationships within each vegetation community. Our results show that soil temperature under the snowpack, snowmelt timing, and air temperature following snowmelt are the most important drivers of growing season timing and productivity among Arctic vegetation communities. Air temperature after snowmelt was the most important control on timing of season start and end, with warmer conditions contributing to earlier phenology in all vegetation communities. In contrast, the controls on the timing of peak season and productivity also included snowmelt timing and soil temperature under the snowpack, dictated in part by the snow insulating capacity. The results of this novel analysis suggest that while future warming effects on phenology may be consistent across communities of the tundra biome, warming may result in divergent, community‐specific productivity responses if coupled with reduced snow insulating capacity lowers winter soil temperature and potential nutrient cycling in the soil.

 
more » « less
PAR ID:
10453394
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
27
Issue:
8
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1572-1586
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO 2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO 2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO 2 later in the season. 
    more » « less
  2. Abstract

    Alpine tundra ecosystems are highly vulnerable to climate warming but are governed by local‐scale abiotic heterogeneity, which makes it difficult to predict tundra responses to environmental change. Although land models are typically implemented at global scales, they can be applied at local scales to address process‐based ecological questions. In this study, we ran ecosystem‐scale Community Land Model (CLM) simulations with a novel hillslope hydrology configuration to represent topographically heterogeneous alpine tundra vegetation across a moisture gradient at Niwot Ridge, Colorado, USA. We used local observations to evaluate our simulations and investigated the role of topography and aspect in mediating patterns of snow, productivity, soil moisture, and soil temperature, as well as the potential exposure to climate change across an alpine tundra hillslope. Overall, our simulations captured observed gradients in abiotic conditions and productivity among heterogeneous, hydrologically connected vegetation communities (moist, wet, and dry). We found that south facing aspects were characterized by reduced snowpack and drier and warmer soils in all communities. When we extended our simulations to the year 2100, we found that earlier snowmelt altered the timing of runoff, with cascading effects on soil moisture, productivity, and growing season length. However, these effects were not distributed equally across the tundra, highlighting potential vulnerabilities of alpine vegetation in dry, wind‐scoured, and south facing areas. Overall, our results demonstrate how land model outputs can be applied to advance process‐based understanding of climate change impacts on ecosystem function.

     
    more » « less
  3. Abstract The ongoing disproportionate increases in temperature and precipitation over the Arctic region may greatly alter the latitudinal gradients in greenup and snowmelt timings as well as associated carbon dynamics of tundra ecosystems. Here we use remotely-sensed and ground-based datasets and model results embedding snowmelt timing in phenology at seven tundra flux tower sites in Alaska during 2001–2018, showing that the carbon response to early greenup or delayed snowmelt varies greatly depending upon local climatic limits. Increases in net ecosystem productivity (NEP) due to early greenup were amplified at the higher latitudes where temperature and water strongly colimit vegetation growth, while NEP decreases due to delayed snowmelt were alleviated by a relief of water stress. Given the high likelihood of more frequent delayed snowmelt at higher latitudes, this study highlights the importance of understanding the role of snowmelt timing in vegetation growth and terrestrial carbon cycles across warming Arctic ecosystems. 
    more » « less
  4. Abstract

    Climate change is affecting winter snow conditions significantly in northern ecosystems but the effects of the changing conditions for soil microbial communities are not well-understood. We utilized naturally occurring differences in snow accumulation to understand how the wintertime subnivean conditions shape bacterial and fungal communities in dwarf shrub-dominated sub-Arctic Fennoscandian tundra sampled in mid-winter, early, and late growing season. Phospholipid fatty acid (PLFA) and quantitative PCR analyses indicated that fungal abundance was higher in windswept tundra heaths with low snow accumulation and lower nutrient availability. This was associated with clear differences in the microbial community structure throughout the season. Members of Clavaria spp. and Sebacinales were especially dominant in the windswept heaths. Bacterial biomass proxies were higher in the snow-accumulating tundra heaths in the late growing season but there were only minor differences in the biomass or community structure in winter. Bacterial communities were dominated by members of Alphaproteobacteria, Actinomycetota, and Acidobacteriota and were less affected by the snow conditions than the fungal communities. The results suggest that small-scale spatial patterns in snow accumulation leading to a mosaic of differing tundra heath vegetation shapes bacterial and fungal communities as well as soil carbon and nutrient availability.

     
    more » « less
  5. Abstract

    Patterns of alpine plant productivity are extremely variable in space and time. Complex topography drives variations in temperature, wind, and solar radiation. Surface and subsurface flow paths route water between landscape patches. Redistribution of snow creates scour zones and deep drifts, which drives variation in water availability and growing season length. Hence, the distribution of snow likely plays a central role in patterns of alpine plant productivity. Given that these processes operate at sub‐1 m to sub‐10 m spatial scales and are dynamic across daily to weekly time scales, historical studies using manual survey techniques have not afforded a comprehensive assessment of the influence of snow distribution on plant productivity. To address this knowledge gap, we used weekly estimates of normalised difference vegetation index (NDVI), snow extent, and peak snow depth, acquired from drone surveys at 25 cm resolution. We derived six snowpack‐related and topographic variables that may influence vegetation productivity and analysed these with respect to the timing and magnitude of peak productivity. Peak NDVI and peak NDVI timing were most highly correlated with maximum snow depth, and snow‐off‐date. We observed up to a ~30% reduction in peak NDVI for areas with deeper and later snow cover, and a ~11‐day delay in the timing of peak NDVI in association with later snow‐off‐date. Our findings leverage a novel approach to quantify the importance of snow distribution in driving alpine vegetation productivity and provide a space for time proxy of potential changes in a warmer, lower snow future.

     
    more » « less