skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
Abstract Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO 2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO 2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO 2 later in the season.  more » « less
Award ID(s):
1932900 1936752 2011276
PAR ID:
10327230
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming—two key environmental‐change drivers in the Arctic—alter CO2fluxes in three tundra habitats varying in soil moisture and plant‐community composition. In a full‐factorial experiment in high‐Arctic Svalbard, we simulated grubbing and warming over two years and determined summer net ecosystem exchange (NEE) alongside its components: gross ecosystem productivity (GEP) and ecosystem respiration (ER). After two years, we found net CO2uptake to be suppressed by both drivers depending on habitat. CO2uptake was reduced by warming in mesic habitats, by warming and grubbing in moist habitats, and by grubbing in wet habitats. In mesic habitats, warming stimulated ER (+75%) more than GEP (+30%), leading to a 7.5‐fold increase in their CO2source strength. In moist habitats, grubbing decreased GEP and ER by ~55%, while warming increased them by ~35%, with no changes in summer‐long NEE. Nevertheless, grubbing offset peak summer CO2uptake and warming led to a twofold increase in late summer CO2source strength. In wet habitats, grubbing reduced GEP (−40%) more than ER (−30%), weakening their CO2sink strength by 70%. One‐year CO2‐flux responses were similar to two‐year responses, and the effect of simulated grubbing was consistent with that of natural grubbing. CO2‐flux rates were positively related to aboveground net primary productivity and temperature. Net ecosystem CO2uptake started occurring above ~70% soil moisture content, primarily due to a decline in ER. Herein, we reveal that key environmental‐change drivers—goose grubbing by decreasing GEP more than ER and warming by enhancing ER more than GEP—consistently suppress net tundra CO2uptake, although their relative strength differs among habitats. By identifying how and where grubbing and higher temperatures alter CO2fluxes across the heterogeneous Arctic landscape, our results have implications for predicting the tundra carbon balance under increasing numbers of geese in a warmer Arctic. 
    more » « less
  2. Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO2) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO2flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO2database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 ± 0.67 g CO2–C m−2d−1) relative to tundra (0.94 ± 0.4 g CO2–C m−2d−1). We also observed considerable emissions (boreal: 0.24 ± 0.2 g CO2–C m−2d−1; tundra: 0.18 ± 0.16 g CO2–C m−2d−1) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 ± 120 Tg CO2–C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO2to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change. 
    more » « less
  3. Abstract. The warming of the Arctic is affecting the carbon cycle of tundraecosystems. Most research on carbon fluxes from Arctic tundra ecosystems hasfocused on abiotic environmental controls (e.g., temperature, rainfall, orradiation). However, Arctic tundra vegetation, and therefore the carbonbalance of these ecosystems, can be substantially impacted by herbivory. Inthis study we tested how vegetation consumption by brown lemmings (Lemmus trimucronatus) canimpact carbon exchange of a wet-sedge tundra ecosystem near Utqiaġvik,Alaska during the summer and the recovery of vegetation during the followingsummer. We placed brown lemmings in individual enclosure plots and testedthe impact of lemmings' herbivory on carbon dioxide (CO2) fluxes, methane(CH4) fluxes, and the normalized difference vegetation index (NDVI)immediately after lemming removal and during the following growing season.During the first summer of the experiment, lemmings' herbivory reduced plantbiomass (as shown by the decrease in the NDVI) and decreased net CO2uptake while not significantly impacting CH4 emissions. CH4emissions were likely not significantly affected due to CH4 beingproduced deeper in the soil and escaping from the stem bases of the vascularplants. The summer following the lemming treatments, NDVI and net CO2fluxes returned to magnitudes similar to those observed before the start ofthe experiment, suggesting a complete recovery of the vegetation and atransitory nature of the impact of lemming herbivory. Overall, lemmingherbivory has short-term but substantial effects on carbon sequestration byvegetation and might contribute to the considerable interannual variabilityin CO2 fluxes from tundra ecosystems. 
    more » « less
  4. Abstract Permafrost thaw causes the seasonally thawed active layer to deepen, causing the Arctic to shift toward carbon release as soil organic matter becomes susceptible to decomposition. Ground subsidence initiated by ice loss can cause these soils to collapse abruptly, rapidly shifting soil moisture as microtopography changes and also accelerating carbon and nutrient mobilization. The uncertainty of soil moisture trajectories during thaw makes it difficult to predict the role of abrupt thaw in suppressing or exacerbating carbon losses. In this study, we investigated the role of shifting soil moisture conditions on carbon dioxide fluxes during a 13‐year permafrost warming experiment that exhibited abrupt thaw. Warming deepened the active layer differentially across treatments, leading to variable rates of subsidence and formation of thermokarst depressions. In turn, differential subsidence caused a gradient of moisture conditions, with some plots becoming consistently inundated with water within thermokarst depressions and others exhibiting generally dry, but more variable soil moisture conditions outside of thermokarst depressions. Experimentally induced permafrost thaw initially drove increasing rates of growing season gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE) (higher carbon uptake), but the formation of thermokarst depressions began to reverse this trend with a high level of spatial heterogeneity. Plots that subsided at the slowest rate stayed relatively dry and supported higher CO2fluxes throughout the 13‐year experiment, while plots that subsided very rapidly into the center of a thermokarst feature became consistently wet and experienced a rapid decline in growing season GPP,Reco, and NEE (lower carbon uptake or carbon release). These findings indicate that Earth system models, which do not simulate subsidence and often predict drier active layer conditions, likely overestimate net growing season carbon uptake in abruptly thawing landscapes. 
    more » « less
  5. Abstract The ongoing disproportionate increases in temperature and precipitation over the Arctic region may greatly alter the latitudinal gradients in greenup and snowmelt timings as well as associated carbon dynamics of tundra ecosystems. Here we use remotely-sensed and ground-based datasets and model results embedding snowmelt timing in phenology at seven tundra flux tower sites in Alaska during 2001–2018, showing that the carbon response to early greenup or delayed snowmelt varies greatly depending upon local climatic limits. Increases in net ecosystem productivity (NEP) due to early greenup were amplified at the higher latitudes where temperature and water strongly colimit vegetation growth, while NEP decreases due to delayed snowmelt were alleviated by a relief of water stress. Given the high likelihood of more frequent delayed snowmelt at higher latitudes, this study highlights the importance of understanding the role of snowmelt timing in vegetation growth and terrestrial carbon cycles across warming Arctic ecosystems. 
    more » « less