skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reproducibility of Coral Mn/Ca‐Based Wind Reconstructions at Kiritimati Island and Butaritari Atoll
Abstract Global surface temperatures during the twentieth century are characterized by multidecadal periods of accelerated or reduced warming, which are thought to be driven by Pacific decadal variability, specifically changes in trade‐wind strength. However, the relationship between trade‐wind strength and global surface warming remains poorly constrained due to the scarcity of instrumental wind observations. Previous work has shown that corals growing at Tarawa Atoll (1.3°N, 173°E) incorporate dissolved Mn flushed from lagoon sediments by El Niño‐related westerly wind events (WWEs), providing records of both westerly wind variability and trade‐wind strength (on decadal time scales). Here, we explore the utility of this novel coral Mn/Ca‐wind proxy at two nearby islands that also feature west‐facing lagoons. Short coral Mn/Ca records from Butaritari (3°N, 173°E) and Kiritimati (2°N, 157.5°W) track WWEs, albeit with some intercolony variability in the magnitude and timing of the signal. Variability in coral Mn/Ca signal intensity among records from Butaritari suggests that wind‐driven mixing of the sediment Mn reservoir may be finite and/or localized. At Kiritimati, a coral growing outside the lagoon shows higher Mn/Ca concentrations during the 1997/1998 El Niño event, suggesting that nearshore sediments may be an overlooked dissolved Mn reservoir. Taken together, these results highlight a need for additional studies of Mn reservoir variability within and across atolls that hold promise for recording WWEs. These results also suggest that Mn/Ca records from multiple coral colonies and sites are needed to generate robust coral‐based wind reconstructions, particularly from sites with unknown or complex Mn transport pathways.  more » « less
Award ID(s):
1931242 1945479
PAR ID:
10453398
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
22
Issue:
3
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coral Sr/Ca records have been widely used to reconstruct and understand past sea surface temperature (SST) variability in the tropical Pacific. However, in the eastern equatorial Pacific, coral growth conditions are marginal, and strong El Niño events have led to high mortality, limiting opportunities for coral Sr/Ca‐based SST reconstructions. In this study, we present two ∼25‐year Sr/Ca and Mg/Ca records measured on modernPorites lobatafrom Wolf and Darwin Islands in the northern Galápagos. In these records, we confirm the well‐established relationship between Sr/Ca and SST and investigate the impact of heat stress on this relationship. We demonstrate a weakened relationship between Sr/Ca and SST after a major (Degree Heating Months 9°C‐months) heat stress event during the 1997–1998 El Niño, with a larger response in the Wolf core. However, removing data that covers the 1997–1998 El Niño from calibration does not improve reconstruction statistics. Nevertheless, we find that excluding dataafterthe 1997–1998 El Niño event from the calibration reduces the SST reconstruction error slightly. These results confirm that coral Sr/Ca is a reliable SST proxy in this region, although it can respond adversely to unusual heat stress. We suggest that noise in Sr/Ca‐SST calibrations may be reduced by removing data immediately following large heat extremes. 
    more » « less
  2. Abstract Coral records of surface‐ocean conditions extend our knowledge of interannual El Niño–Southern Oscillation (ENSO) variability into the preinstrumental period. That said, the wide range of natural variability within the climate system as well as multiple sources of uncertainties inherent to the coral archive produce challenges for the paleoclimate community to detect forced changes in ENSO using coral geochemical records. We present a new coral proxy system model (PSM) of intermediate complexity, geared toward the evaluation of changes in interannual variance. Our coral PSM adds additional layers of complexity to previously published transfer functions of sensor models that describe how the archive responds to sea surface temperature (SST) and salinity. We use SST and salinity output from the Community Earth System Model Last Millennium Ensemble 850 control to model coral oxygen isotopic ratios and SST derived from Sr/Ca. We present a detailed analysis of our PSM using climate model output for sites in the central and southwest Pacific before extending the analyses to span the broader tropical Pacific. We demonstrate how variable growth rates, analytical and calibration errors, and age model assumptions systematically impact estimates of interannual variance and show that the relative magnitude of the change in interannual variance is location dependent. Importantly, however, we find that even with the added uncertainties in our PSM, corals from many circum‐Pacific locations are broadly able to capture decadal and longer (decadal+) changes in ENSO variability. Our code is publicly available on GitHub to facilitate future comparisons between model output and coral proxy data. 
    more » « less
  3. Abstract Global and regional impacts of El Niño-Southern Oscillation (ENSO) are sensitive to the details of the pattern of anomalous ocean warming and cooling, such as the contrasts between the eastern and central Pacific. However, skillful prediction of such ENSO diversity remains a challenge even a few months in advance. Here, we present an experimental forecast with a deep learning model (IGP-UHM AI model v1.0) for theE(eastern Pacific) andC(central Pacific) ENSO diversity indices, specialized on the onset of strong eastern Pacific El Niño events by including a classification output. We find that higher ENSO nonlinearity is associated with better skill, with potential implications for ENSO predictability in a warming climate. When initialized in May 2023, our model predicts the persistence of El Niño conditions in the eastern Pacific into 2024, but with decreasing strength, similar to 2015–2016 but much weaker than 1997–1998. In contrast to the more typical El Niño development in 1997 and 2015, in addition to the ongoing eastern Pacific warming, an eXplainable Artificial Intelligence analysis for 2023 identifies weak warm surface, increased sea level and westerly wind anomalies in the western Pacific as precursors, countered by warm surface and southerly wind anomalies in the northern Atlantic. 
    more » « less
  4. Abstract The impacts of El Niño‐Southern Oscillation (ENSO) on salinity and alkalinity in an equatorial coral reef lagoon (Kanton) are investigated using water samples collected in three non‐El Niño years (1973, 2012, and 2018) and one El Niño year (2015). A one‐dimensional, advective‐diffusive model is developed to aid in the interpretation of the sparse observations and make estimates of net ecosystem calcification (NEC) rates. The Kanton lagoon experiences extreme salinity and alkalinity variations driven by ENSO variations in precipitation. During the non‐El Niño years, salinity increases from the ocean (35.5 psu) to the back of the lagoon (38 psu) because evaporation exceeds precipitation, and water resides in the back of the lagoon for ∼180 days. Early in the 2015–2016 El Niño, the back of the lagoon is only ∼1 psu saltier than the ocean because precipitation had begun to exceed evaporation. The model suggests that during El Niño events, when precipitation substantially exceeds evaporation, the back of the lagoon is less salty than the ocean (30–32 psu). Alkalinity variations in the lagoon are primarily due to dilution or concentration driven by the ENSO variations in precipitation and NEC that causes an alkalinity deficit of ∼250 μmol/kg in the back of the lagoon. The estimated NEC rate in 2015 is ∼25% lower (4.1 mmol/day) than in the non‐El Niño years (5.3–5. 7 mmol/day). The NEC rates and coral cover measurements indicate that the Kanton lagoon has recovered from the complete loss of coral cover during the 2002–2003 El Niño. 
    more » « less
  5. The oceanic response to recent tropical eruptions is examined in Large Ensemble (LE) experiments from two fully coupled global climate models, the Community Earth System Model (CESM) and the Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2M), each forced by a distinct volcanic forcing dataset. Following the simulated eruptions of Agung, El Chichón, and Pinatubo, the ocean loses heat and gains oxygen and carbon, in general agreement with available observations. In both models, substantial global surface cooling is accompanied by El Niño–like equatorial Pacific surface warming a year after the volcanic forcing peaks. A mechanistic analysis of the CESM and ESM2M responses to Pinatubo identifies remote wind forcing from the western Pacific as a major driver of this El Niño–like response. Following eruption, faster cooling over the Maritime Continent than adjacent oceans suppresses convection and leads to persistent westerly wind anomalies over the western tropical Pacific. These wind anomalies excite equatorial downwelling Kelvin waves and the upwelling of warm subsurface anomalies in the eastern Pacific, promoting the development of El Niño conditions through Bjerknes feedbacks a year after eruption. This El Niño–like response drives further ocean heat loss through enhanced equatorial cloud albedo, and dominates global carbon uptake as upwelling of carbon-rich waters is suppressed in the tropical Pacific. Oxygen uptake occurs primarily at high latitudes, where surface cooling intensifies the ventilation of subtropical thermocline waters. These volcanically forced ocean responses are large enough to contribute to the observed decadal variability in oceanic heat, carbon, and oxygen. 
    more » « less