Abstract Coral reefs worldwide are threatened by thermal stress caused by climate change. Especially devastating periods of coral loss frequently occur during El Niño‐Southern Oscillation (ENSO) events originating in the Eastern Tropical Pacific (ETP). El Niño‐induced thermal stress is considered the primary threat to ETP coral reefs. An increase in the frequency and intensity of ENSO events predicted in the coming decades threatens a pan‐tropical collapse of coral reefs. During the 1982–1983 El Niño, most reefs in the Galapagos Islands collapsed, and many more in the region were decimated by massive coral bleaching and mortality. However, after repeated thermal stress disturbances, such as those caused by the 1997–1998 El Niño, ETP corals reefs have demonstrated regional persistence and resiliency. Using a 44 year dataset (1970–2014) of live coral cover from the ETP, we assess whether ETP reefs exhibit the same decline as seen globally for other reefs. Also, we compare the ETP live coral cover rate of change with data from the maximum Degree Heating Weeks experienced by these reefs to assess the role of thermal stress on coral reef survival. We find that during the period 1970–2014, ETP coral cover exhibited temporary reductions following major ENSO events, but no overall decline. Further, we find that ETP reef recovery patterns allow coral to persist under these El Niño‐stressed conditions, often recovering from these events in 10–15 years. Accumulative heat stress explains 31% of the overall annual rate of change of living coral cover in the ETP. This suggests that ETP coral reefs have adapted to thermal extremes to date, and may have the ability to adapt to near‐term future climate‐change thermal anomalies. These findings for ETP reef resilience may provide general insights for the future of coral reef survival and recovery elsewhere under intensifying El Niño scenarios.
more »
« less
This content will become publicly available on June 10, 2026
Impact of El Niño‐Southern Oscillation on the Alkalinity and Salinity of a Coral Reef Lagoon in the Equatorial Pacific—Observations and a Model
Abstract The impacts of El Niño‐Southern Oscillation (ENSO) on salinity and alkalinity in an equatorial coral reef lagoon (Kanton) are investigated using water samples collected in three non‐El Niño years (1973, 2012, and 2018) and one El Niño year (2015). A one‐dimensional, advective‐diffusive model is developed to aid in the interpretation of the sparse observations and make estimates of net ecosystem calcification (NEC) rates. The Kanton lagoon experiences extreme salinity and alkalinity variations driven by ENSO variations in precipitation. During the non‐El Niño years, salinity increases from the ocean (35.5 psu) to the back of the lagoon (38 psu) because evaporation exceeds precipitation, and water resides in the back of the lagoon for ∼180 days. Early in the 2015–2016 El Niño, the back of the lagoon is only ∼1 psu saltier than the ocean because precipitation had begun to exceed evaporation. The model suggests that during El Niño events, when precipitation substantially exceeds evaporation, the back of the lagoon is less salty than the ocean (30–32 psu). Alkalinity variations in the lagoon are primarily due to dilution or concentration driven by the ENSO variations in precipitation and NEC that causes an alkalinity deficit of ∼250 μmol/kg in the back of the lagoon. The estimated NEC rate in 2015 is ∼25% lower (4.1 mmol/day) than in the non‐El Niño years (5.3–5. 7 mmol/day). The NEC rates and coral cover measurements indicate that the Kanton lagoon has recovered from the complete loss of coral cover during the 2002–2003 El Niño.
more »
« less
- Award ID(s):
- 2049567
- PAR ID:
- 10599557
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 130
- Issue:
- 6
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Low clouds frequent the subtropical northeastern Pacific Ocean (NEP) and interact with the local sea surface temperature (SST) to form positive feedback. Wind fluctuations drive SST variability through wind–evaporation–SST (WES) feedback, and surface evaporation also acts to damp SST. This study investigates the relative contributions of these feedbacks to NEP SST variability. Over the summer NEP, the low cloud–SST feedback is so large that it exceeds the evaporative damping and amplifies summertime SST variations. The WES feedback causes the locally enhanced SST variability to propagate southwestward from the NEP low cloud deck, modulating El Niño–Southern Oscillation (ENSO) occurrence upon reaching the equator. As a result, a second-year El Niño tends to occur when there are significant warm SST anomalies over the subtropical NEP in summer following an antecedent El Niño event and a second-year La Niña tends to occur when there are significant cold SST anomalies over the subtropical NEP in summer following an antecedent La Niña event The mediating role of the NEP low cloud–SST feedback is confirmed in a cloud-locking experiment with the Community Earth System Model, version 1 (CESM1). When the cloud–ocean coupling is disabled, SST variability over the NEP weakens and the modulating effect on ENSO vanishes. The nonlocal effect of the NEP low cloud–SST feedback on ENSO has important implications for climate prediction.more » « less
-
Abstract The Indian and Pacific Oceans surround the Maritime Continent (MC). Major modes of sea surface temperature variability in both oceans, including the Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation (ENSO), can strongly affect precipitation on the MC. The prevalence of fires in the MC is closely associated with precipitation amount and terrestrial water storage in September and October. Precipitation and terrestrial water storage, which is a measurement of hydrological drought conditions, are significantly modulated by Indian Ocean Dipole (IOD) and El Niño events. We utilize long-term datasets to study the combined effects of ENSO and the IOD on MC precipitation during the past 100 years (1900–2019) and find that the reductions in MC precipitation and terrestrial water storage are more pronounced during years when El Niño and a positive phase of the IOD (pIOD) coincided. The combined negative effects are produced mainly through an enhanced reduction of upward motion over the MC. Coincident El Niño-pIOD events have occurred more frequently after 1965. However, climate models do not project a higher occurrence of coincident El Niño-pIOD events in a severely warming condition, implying that not the global warming but the natural variability might be the leading cause of this phenomenon.more » « less
-
null (Ed.)Abstract The structure and variations of the North Equatorial Counter Current (NECC) in the far western Pacific Ocean during 2014-2016 are investigated using repeated in-situ hydrographic data, altimeter data, Argo data, and reanalysis data. The NECC shifted ~1 degree southward and intensified significantly with its transport exceeding 40 Sv (1 Sv = 10 6 m 3 s -1 ), nearly double its climatology value, during the developing phase of the 2015/16 El Niño event. Observations show that the 2015/16 El Niño exerted a comparable impact on the NECC with that of the extreme 1997/98 El Niño in the far western Pacific Ocean. Baroclinic instability provided the primary energy source for the eddy kinetic energy (EKE) in the 2015/16 El Niño, which differs from the traditional understanding of the energy source of EKE as barotropic instability in low latitude ocean. The enhanced vertical shear and the reduced density jump between the NECC layer and the subsurface North Equatorial Subsurface Current (NESC) layer renders the NECC–NESC system baroclinically unstable in the western Pacific Ocean during El Niño developing phase. The eddy-mean flow interactions here are diverse associated with various states of the El Niño Southern Oscillation (ENSO).more » « less
-
Abstract The intricate currents of the Northwest Pacific Ocean, with strong manifestations along the westside rim, connect tropical and subtropical gyres and significantly influence East Asian and global climates. The El Niño/Southern Oscillation (ENSO) originates in the tropical Pacific Ocean and disrupts this ocean circulation system. However, the spatiotemporal dependence of the impact of ENSO events has yet to be elucidated because of the complexities of both ENSO events and circulation systems, as well as the increased availability of observational data. We thus combined altimeter and drifter observations to demonstrate the distinct tropical and subtropical influences of the circulation system on ENSO diversity. During El Niño years, the North Equatorial Current, North Equatorial Countercurrent, Mindanao Current, Indonesian Throughflow, and the subtropical Kuroshio Current and its Extension region exhibit strengthening, while the tropical Kuroshio Current weakens. The tropical impact is characterized by sea level changes in the warm pool, whereas the subtropical influence is driven by variations in the wind stress curl. The tropical and subtropical influences are amplified during the Centra Pacific El Niño years compared to the Eastern Pacific El Niño years. As the globe warms, these impacts are anticipated to intensify. Thus, strengthening observation systems and refining climate models are essential for understanding and projecting the enhancing influences of ENSO on the Northwest Pacific Oceanic circulation.more » « less
An official website of the United States government
