skip to main content


Title: Miniaturization of Hydrocyclones by High‐Resolution 3D Printing for Rapid Microparticle Separation
Abstract

Hydrocyclones are a simple and powerful particle separation technology, widely used in macroscale industrial processes, with enormous potential for miniaturization. Although recent efforts to shrink hydrocyclones to the centimeter scale have shown great promise for passive and high‐throughput microparticle separations, further miniaturization is constrained by limited understanding of the impact of device size scale and design on separation performance, and challenges in realizing the complex internal structures of hydrocyclones at small size scales using conventional microfabrication techniques. Here, fundamental scaling issues for hydrocyclones with sub‐millimeter critical dimensions are investigated, and the first microscale hydrocyclones with critical feature size as small as 250 µm are demonstrated by taking advantages of 3D printing using stereolithography coupled with digital light processing. The resulting devices are shown to provide high separation efficiency for particles as small as 3.7 µm while operating at high flow rates up to 40 mL min−1, with scaling analysis suggesting that sub‐micrometer particle separations can be achieved with further miniaturization, potentially making the technology suitable for the rapid isolation and concentration of both inorganic and biological nanoparticles.

 
more » « less
NSF-PAR ID:
10453413
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
5
Issue:
4
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Small machines are highly promising for future medicine and new materials. Recent advances in functional nanomaterials have driven the development of synthetic inorganic micromachines that are capable of efficient propulsion and complex operation. Miniaturization and large‐scale manufacturing of these tiny machines with true nanometer dimension are crucial for compatibility with subcellular components and molecular machines in operation. Here, block copolymer lithography is combined with atomic layer deposition for wafer‐scale fabrication of ultrasmall coaxial TiO2/Pt nanotubes as catalytic rocket engines with length below 150 nm and a tubular reactor size of only 20 nm, leading to the smallest man‐made rocket engine reported to date. The movement of the nanorockets is examined using dark‐field microscopy particle tracking and dynamic light scattering. The high catalytic activity of the Pt inner layer and the reaction confined within the extremely small nanoreactor enable highly efficient propulsion, achieving speeds over 35 µm s−1at a low Reynolds number of <10−5. The collective movements of these nanorockets are able to efficiently power the directional transport of significantly larger passive cargo.

     
    more » « less
  2. Abstract

    Low-mass galaxy pair fractions are understudied, and it is unclear whether low-mass pair fractions evolve in the same way as more massive systems over cosmic time. In the era of JWST, Roman, and Rubin, selecting galaxy pairs in a self-consistent way will be critical to connect observed pair fractions to cosmological merger rates across all mass scales and redshifts. Utilizing the Illustris TNG100 simulation, we create a sample of physically associated low-mass (108<M*< 5 × 109M) and high-mass (5 × 109<M*< 1011M) pairs betweenz= 0 and 4.2. The low-mass pair fraction increases fromz= 0 to 2.5, while the high-mass pair fraction peaks atz= 0 and is constant or slightly decreasing atz> 1. Atz= 0 the low-mass major (1:4 mass ratio) pair fraction is 4× lower than high-mass pairs, consistent with findings for cosmological merger rates. We show that separation limits that vary with the mass and redshift of the system, such as scaling by the virial radius of the host halo (rsep< 1Rvir), are critical for recovering pair fraction differences between low-mass and high-mass systems. Alternatively, static physical separation limits applied equivalently to all galaxy pairs do not recover the differences between low- and high-mass pair fractions, even up to separations of 300 kpc. Finally, we place isolated mass analogs of Local Group galaxy pairs, i.e., Milky Way (MW)–M31, MW–LMC, LMC–SMC, in a cosmological context, showing that isolated analogs of LMC–SMC-mass pairs and low-separation (<50 kpc) MW–LMC-mass pairs are 2–3× more common atz≳ 2–3.

     
    more » « less
  3. Abstract

    We have developed a rapid, low‐cost, and simple separation strategy to separate extracellular vesicles (EVs) from a small amount of serum (i.e.,<100 μL) with minimal contamination by serum proteins and lipoprotein particles to meet the high purity requirement for EV proteome analysis. EVs were separated by a novel polyester capillary channel polymer (PET C‐CP) fiber phase/hydrophobic interaction chromatography (HIC) method which is rapid and can process small size samples. The collected EV fractions were subjected to a post‐column cleanup protocol using a centrifugal filter to perform buffer exchange and eliminate potential coeluting non‐EV proteins while minimizing EV sample loss. Downstream characterization demonstrated that our current strategy can separate EVs with the anticipated exosome‐like particle size distribution and high yield (∼1 × 1011EV particles per mL of serum) in approximately 15 min. Proteome profiling of the EVs reveals that a group of genuine EV components were identified that have significantly less high‐abundance blood proteins and lipoprotein particle contamination in comparison to traditional separation methods. The use of this methodology appears to address the major challenges facing EV separation for proteomics analysis. In addition, the EV post‐column cleanup protocol proposed in the current work has the potential to be combined with other separation methods, such as ultracentrifugation (UC), to further purify the separated EV samples.

     
    more » « less
  4. Abstract

    Microfluidic paper-based analytical devices (microPADs) are emerging as cost-effective and portable platforms for point-of-care assays. A fundamental limitation of microPAD fabrication is the imprecise nature of most methods for patterning paper. The present work demonstrates that paper patterned via wax printing can be miniaturized by treating it with periodate to produce higher-resolution, high-fidelity microPADs. The optimal miniaturization parameters were determined by immersing microPADs in various concentrations of aqueous sodium periodate (NaIO4) for varying lengths of time. This treatment miniaturized microPADs by up to 80% in surface area, depending on the concentration of periodate and length of the reaction time. By immersing microPADs in 0.5-M NaIO4for 48 hours, devices were miniaturized by 78% in surface area, and this treatment allowed for the fabrication of functional channels with widths as small as 301 µm and hydrophobic barriers with widths as small as 387 µm. The miniaturized devices were shown to be compatible with redox-based colorimetric assays and enzymatic reactions. This miniaturization technique provides a new option for fabricating sub-millimeter-sized features in paper-based fluidic devices without requiring specialized equipment and could enable new capabilities and applications for microPADs.

     
    more » « less
  5. Abstract

    Conventional dialyzer membranes typically comprise of unevenly distributed polydisperse, tortuous, rough pores, embedded in relatively thick ≈20–50 µm polymer layers wherein separation occurs via size exclusion as well as differences in diffusivity of the permeating species. However, transport in such polymeric pores is increasingly hindered as the molecule size approaches the pore dimension, resulting in significant retention of undesirable middle molecules (≥15–60 kDa) and uremic toxins. Enhanced removal of middle molecules is usually accompanied by high albumin loss (≈66 kDa) causing hypoalbuminemia. Here, the scalable bottom‐up fabrication of wafer‐scale carbon nanotube (CNT) membranes with highly aligned, low‐friction, straight‐channels/capillaries and narrow pore‐diameter distributions (≈0.5–4.5 nm) is demonstrated, to overcome persistent challenges in hemofiltration/hemodialysis. Using fluorescein isothiocyanate (FITC)‐Ficoll 70 and albumin in phosphate buffered saline (PBS) as well as in bovine blood plasma, it is shown that CNT membranes can allow for significantly higher hydraulic permeability (more than an order of magnitude when normalized to pore area) than commercial high‐flux hemofiltration/hemodialysis membranes (HF 400), as well as greatly enhance removal of middle molecules while maintaining comparable albumin retention. These findings are rationalized via an N‐pore transport model that highlights the critical role of molecular flexing and deformation during size‐selective transport within nanoscale confinements of the CNTs. The unique transport characteristics of CNTs coupled with size‐exclusion and wafer‐scale fabrication offer transformative advances for hemofiltration, and the obtained insight into molecular transport can aid advancements in several other bio‐systems/applications beyond hemofiltration/hemodialysis.

     
    more » « less