skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs)
Abstract Microfluidic paper-based analytical devices (microPADs) are emerging as cost-effective and portable platforms for point-of-care assays. A fundamental limitation of microPAD fabrication is the imprecise nature of most methods for patterning paper. The present work demonstrates that paper patterned via wax printing can be miniaturized by treating it with periodate to produce higher-resolution, high-fidelity microPADs. The optimal miniaturization parameters were determined by immersing microPADs in various concentrations of aqueous sodium periodate (NaIO4) for varying lengths of time. This treatment miniaturized microPADs by up to 80% in surface area, depending on the concentration of periodate and length of the reaction time. By immersing microPADs in 0.5-M NaIO4for 48 hours, devices were miniaturized by 78% in surface area, and this treatment allowed for the fabrication of functional channels with widths as small as 301 µm and hydrophobic barriers with widths as small as 387 µm. The miniaturized devices were shown to be compatible with redox-based colorimetric assays and enzymatic reactions. This miniaturization technique provides a new option for fabricating sub-millimeter-sized features in paper-based fluidic devices without requiring specialized equipment and could enable new capabilities and applications for microPADs.  more » « less
Award ID(s):
1709740
PAR ID:
10153592
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cellulose-based paper is a versatile material with a diverse array of applications. While paper is not commonly thought of as a material that shrinks, here we present a method for miniaturizing paper via periodate oxidation. Chromatography paper was exposed to varying concentrations of periodate (0.1–0.5 M) over a 96-h period. Following optimization of miniaturization parameters, fourteen different types of paper were miniaturized and reductions in surface area ranging from 60 to 80% were observed. All cellulose paper types, but not cellulose-derivatives, displayed successful miniaturization. Results were highly tunable dependent upon periodate concentration and reaction time. Potential applications of the technique are discussed, including its use as a microfabrication method. 
    more » « less
  2. Abstract Shrink lithography is a promising top‐down micro/nanofabrication technique capable of miniaturizing patterns/structures to scales much smaller than the initial mold, however, rapid inexpensive fabrication of high‐fidelity shrinkable microfeatures remains challenging. This work reports the discovery and characterization of a simple, fast, low‐cost method for replicating and miniaturizing intricate micropatterns/structures on commodity heat‐shrinkable polymers. Large‐area permanent micropatterning on polystyrene and polyolefin shrink film is attained in one step under ambient conditions through brief irradiation by a shortwave UV pencil lamp. After baking briefly in an oven, the film shrinks biaxially and the miniaturized micropatterns emerge with significantly reduced surface area (up to 95%) and enhanced depth profile. The entire UV‐micropatterned miniaturization process is highly reproducible and achievable on benchtop under a few minutes without chemicals or sophisticated apparatus. A variety of microgrid patterns are replicated and miniaturized with high yield and resolution on both planar and curved surfaces. Sequential UV exposures enable easy and rapid engineering of sophisticated microtopography with miniaturized, multiscale, multidimensional microstructures. UV–ozone micropatterned polystyrene surfaces are well‐suited for lab‐on‐a‐chip analytical applications owing to the inherent biocompatibility and enhanced surface hydrophilicity. Miniaturization of dense, periodic micropatterns may facilitate low‐cost prototyping of functional devices/surfaces such as micro‐optics/sensors and tunable metamaterials. 
    more » « less
  3. Abstract Marine microplastics are emerging as a growing environmental concern due to their potential harm to marine biota. The substantial variations in their physical and chemical properties pose a significant challenge when it comes to sampling and characterizing small-sized microplastics. In this study, we introduce a novel microfluidic approach that simplifies the trapping and identification process of microplastics in surface seawater, eliminating the need for labeling. We examine various models, including support vector machine, random forest, convolutional neural network (CNN), and residual neural network (ResNet34), to assess their performance in identifying 11 common plastics. Our findings reveal that the CNN method outperforms the other models, achieving an impressive accuracy of 93% and a mean area under the curve of 98 ± 0.02%. Furthermore, we demonstrate that miniaturized devices can effectively trap and identify microplastics smaller than 50 µm. Overall, this proposed approach facilitates efficient sampling and identification of small-sized microplastics, potentially contributing to crucial long-term monitoring and treatment efforts. 
    more » « less
  4. Abstract The area density proxy of foraminiferal shell thickness and calcification intensity has the potential to provide information about past ocean CO2content and has the benefit of small sample requirements, simple analytical techniques, and the ability to re‐use the analyzed foraminifera for other paleo‐proxies. Using a series of multicore core‐tops collected from the southeastern Indian Ocean (1.8–3.8 km water depth), we evaluate the reliability of utilizing area density values ofGlobigerina bulloidesfrom sediment cores to estimate surface ocean carbonate parameters. Because foraminifera in marine sediments can rarely be considered “pristine” (or “glassy”), we grouped area density measurements of shells to designate various stages of diagenesis. Visual signs of alteration were apparent at area density values as low as ∼0.122 × 104 µg/µm2, with deviations from the “pristine” endmember beginning at area density values of ∼0.087 × 104 µg/µm2. We find that increases in area density overprint the surface ocean carbonate signature in thicker (>0.122 × 104 µg/µm2shells), but small increases associated with marine sedimentary burial and diagenesis can be accounted for, allowing this proxy to be applied back in time. Reconstructing the distribution of area density values in a given sample has the potential to provide valuable information on overall sample preservation by estimating the percent of well‐preserved shells (<0.122 × 104 µg/µm2; %wp) in a given sample. Our %wp metric has the potential for use as a proxy for lysocline variability in addition to assessing the suitability of marine sediment samples for surface ocean reconstructions. 
    more » « less
  5. Dutta, Achyut K.; Balaya, Palani; Xu, Sheng (Ed.)
    Monitoring human health in real-time using wearable and implantable electronics (WIE) has become one of the most promising and rapidly growing technologies in the healthcare industry. In general, these electronics are powered by batteries that require periodic replacement and maintenance over their lifetime. To prolong the operation of these electronics, they should have zero post-installation maintenance. On this front, various energy harvesting technologies to generate electrical energy from ambient energy sources have been researched. Many energy harvesters currently available are limited by their power output and energy densities. With the miniaturization of wearable and implantable electronics, the size of the harvesters must be miniaturized accordingly in order to increase the energy density of the harvesters. Additionally, many of the energy harvesters also suffer from limited operational parameters such as resonance frequency and variable input signals. In this work, low frequency motion energy harvesting based on reverse electrowetting-ondielectric (REWOD) is examined using perforated high surface area electrodes with 38 µm pore diameters. Total available surface area per planar area was 8.36 cm2 showing a significant surface area enhancement from planar to porous electrodes and proportional increase in AC voltage density from our previous work. In REWOD energy harvesting, high surface area electrodes significantly increase the capacitance and hence the power density. An AC peak-to-peak voltage generation from the electrode in the range from 1.57-3.32 V for the given frequency range of 1-5 Hz with 0.5 Hz step is demonstrated. In addition, the unconditioned power generated from the harvester is converted to a DC power using a commercial off-theshelf Schottky diode-based voltage multiplier and low dropout regulator (LDO) such that the sensors that use this technology could be fully self-powered. The produced charge is then converted to a proportional voltage by using a commercial charge amplifier to record the features of the motion activities. A transceiver radio is also used to transmit the digitized data from the amplifier and the built-in analog-to-digital converter (ADC) in the micro-controller. This paper proposes the energy harvester acting as a self-powered motion sensor for different physical activities for wearable and wireless healthcare devices. 
    more » « less