skip to main content


Title: ULF Waves Generated Near the Plasmapause by the Magnetosphere‐Ionosphere Interactions
Abstract

Ultralow frequency (ULF) electromagnetic waves are regularly detected by satellites near the plasmapause during substorms. Usually, the small‐scale waves are observed embedded in the large‐scale, quasi‐stationary electric field. We suggest that the small‐scale waves are generated in the ionosphere by the interactions between the large‐scale field and irregularities in the ionospheric density/conductivity. Under certain conditions, these waves can be trapped in the global magnetospheric resonator and amplified by the positive feedback interactions with the ionosphere. To verify this hypothesis, we model with a two‐fluid magnetohydrodynamics code structure and amplitude of the ULF waves simultaneously observed near the plasmapause by the Defense Meteorological Satellite Program satellite at low altitudes and the Combined Release and Radiation Effects satellite at high altitudes. Simulations reproduce in good, quantitative detail the structure and amplitude of the observed waves. In particular, simulations reproduce a “spiky” character of the electric field observed by the Defense Meteorological Satellite Program satellite at low altitude, which is a characteristic feature of ULF waves produced by the ionospheric feedback instability.

 
more » « less
Award ID(s):
1803702
NSF-PAR ID:
10453427
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
2
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Observations show that magnetic pulsations with frequencies around 1 mHz are frequently detected simultaneously at different latitudes on the ground, in the inner magnetosphere, and in the solar wind. The coupling between oscillations in the dynamic pressure or magnetic field carried by the solar wind and the ultra‐low frequency (ULF) waves detected on the ground at high latitudes has been suggested in several studies. We present results from a numerical study of ultra‐low‐frequency waves detected by the ground magnetometers at middle latitudes during substorm. We investigate the hypothesis that these waves are generated by the ionospheric feedback instability driven by the large‐scale electric field in the ionosphere. This field is associated with the surface waves propagating along the ambient magnetic field on a strong perpendicular gradient in the plasma density occurring in the equatorial magnetosphere. The gradient in the plasma density is associated with the plasmapause. The plasmapause moves to the middle latitude when the plasmasphere erodes during substorm. The energy from the external driver can be coupled to the large‐scale surface Alfvén waves traveling along the field lines into the ionosphere and generating small‐scale intense ULF waves and field‐aligned currents at middle latitudes. The simulations of the two‐fluid magnetohydrodynamics model confirm this scenario, and the numerical results show a good quantitative agreement with the observations.

     
    more » « less
  2. Abstract

    A dramatic thermospheric temperature enhancement and inversion layer (TTEIL) was observed by the Fe Boltzmann lidar at McMurdo, Antarctica during a geomagnetic storm (Chu et al. 2011,https://doi.org/10.1029/2011GL050016). The Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) driven by empirical auroral precipitation and background electric fields cannot adequately reproduce the TTEIL. We incorporate the Defense Meteorological Satellite Program (DMSP)/Special Sensor Ultraviolet Spectrographic Imager (SSUSI) auroral precipitation maps, which capture the regional‐scale features into TIEGCM and add subgrid electric field variability in the regions with strong auroral activity. These modifications enable the simulation of neutral temperatures closer to lidar observations and neutral densities closer to GRACE satellite observations (~475 km). The regional scale auroral precipitation and electric field variabilities are both needed to generate strong Joule heating that peaks around 120 km. The resulting temperature increase leads to the change of pressure gradients, thus inducing a horizontal divergence of air flow and large upward winds that increase with altitude. Associated with the upwelling wind is the adiabatic cooling gradually increasing with altitude and peaking at ~200 km. The intense Joule heating around 120 km and strong cooling above result in differential heating that produces a sharp TTEIL. However, vertical heat advection broadens the TTEIL and raises the temperature peak from ~120 to ~150 km, causing simulations deviating from observations. Strong local Joule heating also excites traveling atmospheric disturbances that carry the TTEIL signatures to other regions. Our study suggests the importance of including fine‐structure auroral precipitation and subgrid electric field variability in the modeling of storm‐time ionosphere‐thermosphere responses.

     
    more » « less
  3. Abstract

    This work investigates mid‐ and low‐latitude ionospheric disturbances over the American sector during a moderate but geo‐effective geomagnetic storm on 13–14 March 2022 (π‐Day storm), using ground‐based Global Navigation Satellite System total electron content data, ionosonde observations, and space‐borne measurements from the Global‐scale Observations of Limb and Disk (GOLD), Swarm, the Defense Meteorological Satellite Program (DMSP), and the Ionospheric Connection Explorer (ICON) satellites. Our results show that this modest but geo‐effective storm created a number of large ionospheric disturbances, especially the dynamic multi‐scale electron density gradient features in the storm main phase as follows: (a) The low‐latitude equatorial ionization anomaly (EIA) exhibited a dramatic storm‐time deformation and reformation, where the EIA crests evolved into a bright equatorial band for 1–2 hr and then quickly separated back into the typical double‐crest structure with a broad crest width and deep equatorial trough. (b) Strong equatorial plasma bubbles (EPBs) occurred with an abnormally high latitude/altitude extension, reaching the geomagnetic latitude of ∼30°, corresponding to an Apex height of 2,600 km above the dip equator. (c) The midlatitude ionosphere experienced a conspicuous storm‐enhanced density (SED) plume structure associated with the subauroral polarization stream (SAPS). This SED/SAPS feature showed an unusual temporal variation that intensified and diminished twice. These distinct mid‐ and low‐latitude ionospheric disturbances could be attributed to the storm‐time electrodynamic effect of electric field perturbation, along with contributions from neutral dynamics and thermospheric composition change.

     
    more » « less
  4. Abstract

    Postsunset midlatitude traveling ionospheric disturbances (TIDs) and equatorial plasma bubbles (EPBs) were simultaneously observed over American sector during the geomagnetic storm on 8 September 2017. The characteristics of TIDs are analyzed by using a combination of the Millstone Hill incoherent scatter radar data and 2‐D detrended total electron content (TEC) from ground‐based Global Navigation Satellite System receivers. The main results associated with EPBs are as follows: (1) stream‐like structures of TEC depletion occurred simultaneously at geomagnetically conjugate points, (2) poleward extension of the TEC irregularities/depletions along the magnetic field lines, (3) severe equatorial and midlatitude electron density (Ne) bite outs observed by Defense Meteorological Satellite Program and Swarm satellites, and (4) enhancements of ionosphereFlayer virtual height and vertical drifts observed by equatorial ionosondes near the EPBs initiation region. The stream‐like TEC depletions reached 46° magnetic latitudes that map to an apex altitude of 6,800 km over the magnetic equator using International Geomagnetic Reference Field. The formation of this extended density depletion structure is suggested to be due to the merging between the altitudinal/latitudinal extension of EPBs driven by strong prompt penetration electric field and midlatitude TIDs. Moreover, the poleward portion of the depletion/irregularity drifted westward and reached the equatorward boundary of the ionospheric main trough. This westward drift occurred at the same time as the sudden expansion of the convection pattern and could be attributed to the strong returning westward flow near the subauroral polarization stream region. Other possible mechanisms for the westward tilt are also discussed.

     
    more » « less
  5. Abstract

    A new technique has been developed to determine the high‐latitude electric potential from observed field‐aligned currents (FACs) and modeled ionospheric conductances. FACs are observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), while the conductances are modeled by Sami3 is Also a Model of the Ionosphere (SAMI3). This is a development of the Magnetosphere‐Ionosphere Coupling approach first demonstrated by Merkin and Lyon (2010),https://doi.org/10.1029/2010ja015461. An advantage of using SAMI3 is that the model can be used to predict total electron content (TEC), based on the AMPERE‐derived potential solutions. 23 May 2014 is chosen as a case study to assess the new technique for a moderately disturbed case (min Dst: −36 nT, max AE: 909 nT) with good GPS data coverage. The new AMPERE/SAMI3 solutions are compared against independent GPS‐based TEC observations from the Multi‐Instrument Data Analysis Software (MIDAS) by Mitchell and Spencer (2003), and against Defense Meteorological Satellite Program (DMSP) ion drift data. The comparison shows excellent agreement between the location of the tongue of ionization in the MIDAS GPS data and the AMPERE/SAMI3 potential pattern, and good overall agreement with DMSP drifts. SAMI3 predictions of high‐latitude TEC are much improved when using the AMPERE‐derived potential as compared to Weimer's (2005),https://doi.org/10.1029/2005ja011270model. The two potential models have substantial differences, with Weimer producing an average 77 kV cross‐cap potential versus 60 kV for the AMPERE‐derived potential. The results indicate that the 66‐satellite Iridium constellation provides sufficient resolution of FACs to estimate large‐scale ionospheric convection as it impacts TEC.

     
    more » « less