skip to main content

Title: Numerical Investigations of Interhemispheric Asymmetry due to Ionospheric Conductance
Due to differences in solar illumination, a geomagnetic field line may have one footpoint in a dark ionosphere while the other ionosphere is in daylight. This may happen near the terminator under solstice conditions. In this situation, a resonant wave mode may appear which has a node in the electric field in the sunlit (high conductance) ionosphere and an antinode in the dark (low conductance) ionosphere. Thus, the length of the field line is one quarter of the wavelength of the wave, in contrast with half-wave field line resonances in which both ionospheres are nodes in the electric field. These quarter waves have resonant frequencies that are roughly a factor of 2 lower than the half-wave frequency on the field line. We have simulated these resonances using a fully three-dimensional model of ULF waves in a dipolar magnetosphere. The ionospheric conductance is modeled as a function of the solar zenith angle, and so this model can describe the change in the wave resonance frequency as the ground magnetometer station varies in local time. The results show that the quarter-wave resonances can be excited by a shock-like impulse at the dayside magnetosphere and exhibit many of the properties of the observed more » waves. In particular, the simulations support the notion that a conductance ratio between day and night footpoints of the field line must be greater than about 5 for the quarter waves to exist. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of geophysical research
Sponsoring Org:
National Science Foundation
More Like this
  1. A circuit analogy for magnetosphere-ionosphere current systems has two extremes for drivers of ionospheric currents: the “voltage generator” (ionospheric electric fields/voltages are constant, while current varies) and the “current generator” (current is constant, while the electric field varies). Here we indicate another aspect of the magnetosphere-ionosphere interaction, which should be taken into account when considering the current/voltage dichotomy. We show that nonsteady field-aligned currents interact with the ionosphere in a different way depending on a forced driving or resonant excitation. A quasi-DC driving of field-aligned current corresponds to a voltage generator, when the ground magnetic response is proportional to the ionospheric Hall conductance. The excitation of resonant field line oscillations corresponds to the current generator, when the ground magnetic response only weakly depends on the ionospheric conductance. According to the suggested conception, quasi-DC nonresonant disturbances correspond to a voltage generator. Such ultralow frequency (ULF) phenomena as traveling convection vortices and Pc5 waves should be considered as the resonant response of magnetospheric field lines, and they correspond to a current generator. However, there are quite a few factors that may obscure the determination of the current/voltage dichotomy.
  2. Abstract It has been suggested that ion foreshock waves originating in the solar wind upstream of the quasi-parallel ( Q -||) shock can impact the planetary magnetosphere leading to standing shear Alfvén waves, i.e., the field line resonances (FLRs). In this paper, we carry out simulations of interaction between the solar wind and terrestrial magnetosphere under radial interplanetary magnetic field conditions by using a 3-D global hybrid model, and show the properties of self-consistently generated field line resonances through direct mode conversion in magnetospheric response to the foreshock disturbances for the first time. The simulation results show that the foreshock disturbances from the Q -|| shock can excite magnetospheric ultralow-frequency waves, among which the toroidal Alfvén waves are examined. It is found that the foreshock wave spectrum covers a wide frequency range and matches the band of FLR harmonics after excluding the Doppler shift effects. The fundamental harmonic of field line resonances dominates and has the strongest wave power, and the higher the harmonic order, the weaker the corresponding wave power. The nodes and anti-nodes of the odd and even harmonics in the equatorial plane are also presented. In addition, as the local Alfvén speed increases earthward, the corresponding frequency ofmore »each harmonic increases. The field-aligned current in the cusp region indicative of the possibly observable aurora is found to be a result of magnetopause perturbation which is caused by the foreshock disturbances, and a global view substantiating this scenario is given. Finally, it is found that when the solar wind Mach number decreases, the strength of both field line resonance and field-aligned current decreases accordingly.« less
  3. Abstract

    Dayside transients, such as hot flow anomalies, foreshock bubbles, magnetosheath jets, flux transfer events, and surface waves, are frequently observed upstream from the bow shock, in the magnetosheath, and at the magnetopause. They play a significant role in the solar wind-magnetosphere-ionosphere coupling. Foreshock transient phenomena, associated with variations in the solar wind dynamic pressure, deform the magnetopause, and in turn generates field-aligned currents (FACs) connected to the auroral ionosphere. Solar wind dynamic pressure variations and transient phenomena at the dayside magnetopause drive magnetospheric ultra low frequency (ULF) waves, which can play an important role in the dynamics of Earth’s radiation belts. These transient phenomena and their geoeffects have been investigated using coordinated in-situ spacecraft observations, spacecraft-borne imagers, ground-based observations, and numerical simulations. Cluster, THEMIS, Geotail, and MMS multi-mission observations allow us to track the motion and time evolution of transient phenomena at different spatial and temporal scales in detail, whereas ground-based experiments can observe the ionospheric projections of transient magnetopause phenomena such as waves on the magnetopause driven by hot flow anomalies or flux transfer events produced by bursty reconnection across their full longitudinal and latitudinal extent. Magnetohydrodynamics (MHD), hybrid, and particle-in-cell (PIC) simulations are powerful tools to simulatemore »the dayside transient phenomena. This paper provides a comprehensive review of the present understanding of dayside transient phenomena at Earth and other planets, their geoeffects, and outstanding questions.

    « less
  4. Developing efficient and robust terahertz (THz) sources is of incessant interest in the THz community for their wide applications. With successive effort in past decades, numerous groups have achieved THz wave generation from solids, gases, and plasmas. However, liquid, especially liquid water has never been demonstrated as a THz source. One main reason leading the impediment is that water has strong absorption characteristics in the THz frequency regime. A thin water film under intense laser excitation was introduced as the THz source to mitigate the considerable loss of THz waves from the absorption. Laser-induced plasma formation associated with a ponderomotive force- induced dipole model was proposed to explain the generation process. For the one-color excitation scheme, the water film generates a higher THz electric field than the air does under the identical experimental condition. Unlike the case of air, THz wave generation from liquid water prefers a sub-picosecond (200 – 800 fs) laser pulse rather than a femtosecond pulse (~50 fs). This observation results from the plasma generation process in water. For the two-color excitation scheme, the THz electric field is enhanced by one-order of magnitude in comparison with the one-color case. Meanwhile, coherent control of the THz field ismore »achieved by adjusting the relative phase between the fundamental pulse and the second-harmonic pulse. To eliminate the total internal reflection of THz waves at the water-air interface of a water film, a water line produced by a syringe needle was used to emit THz waves. As expected, more THz radiation can be coupled out and detected. THz wave generation from other liquids were also tested.« less
  5. Variations of vertical atmospheric electric field E z have been attributed mainly to meteorological processes. On the other hand, the theory of electromagnetic waves in the atmosphere, between the bottom ionosphere and earth’s surface, predicts two modes, magnetic H (TE) and electric E (TH) modes, where the E-mode has a vertical electric field component, E z . Past attempts to find signatures of ULF (periods from fractions to tens of minutes) disturbances in E z gave contradictory results. Recently, study of ULF disturbances of atmospheric electric field became feasible thanks to project GLOCAEM, which united stations with 1 sec measurements of potential gradient. These data enable us to address the long-standing problem of the coupling between atmospheric electricity and space weather disturbances at ULF time scales. Also, we have reexamined results of earlier balloon-born electric field and ground magnetic field measurements in Antarctica. Transmission of storm sudden commencement (SSC) impulses to lower latitudes was often interpreted as excitation of the electric TH 0 mode, instantly propagating along the ionosphere–ground waveguide. According to this theoretical estimate, even a weak magnetic signature of the E-mode ∼1 nT must be accompanied by a burst of E z well exceeding the atmospheric potential gradient. We havemore »examined simultaneous records of magnetometers and electric field-mills during >50 SSC events in 2007–2019 in search for signatures of E-mode. However, the observed E z disturbance never exceeded background fluctuations ∼10 V/m, much less than expected for the TH 0 mode. We constructed a model of the electromagnetic ULF response to an oscillating magnetospheric field-aligned current incident onto the realistic ionosphere and atmosphere. The model is based on numerical solution of the full-wave equations in the atmospheric-ionospheric collisional plasma, using parameters that were reconstructed using the IRI model. We have calculated the vertical and horizontal distributions of magnetic and electric fields of both H- and E-modes excited by magnetospheric field-aligned currents. The model predicts that the excitation rate of the E-mode by magnetospheric disturbances is low, so only a weak E z response with a magnitude of ∼several V/m will be produced by ∼100 nT geomagnetic disturbance. However, at balloon heights (∼30 km), electric field of the E-mode becomes dominating. Predicted amplitudes of horizontal electric field in the atmosphere induced by Pc5 pulsations and travelling convection vortices, about tens of mV/m, are in good agreement with balloon electric field and ground magnetometer observations.« less