skip to main content


Title: The role of the microbiome in the neurobiology of social behaviour
ABSTRACT

Microbes colonise all multicellular life, and the gut microbiome has been shown to influence a range of host physiological and behavioural phenotypes. One of the most intriguing and least understood of these influences lies in the domain of the microbiome's interactions with host social behaviour, with new evidence revealing that the gut microbiome makes important contributions to animal sociality. However, little is known about the biological processes through which the microbiome might influence host social behaviour. Here, we synthesise evidence of the gut microbiome's interactions with various aspects of host sociality, including sociability, social cognition, social stress, and autism. We discuss evidence of microbial associations with the most likely physiological mediators of animal social interaction. These include the structure and function of regions of the ‘social' brain (the amygdala, the prefrontal cortex, and the hippocampus) and the regulation of ‘social’ signalling molecules (glucocorticoids including corticosterone and cortisol, sex hormones including testosterone, oestrogens, and progestogens, neuropeptide hormones such as oxytocin and arginine vasopressin, and monoamine neurotransmitters such as serotonin and dopamine). We also discuss microbiome‐associated host genetic and epigenetic processes relevant to social behaviour. We then review research on microbial interactions with olfaction in insects and mammals, which contribute to social signalling and communication. Following these discussions, we examine evidence of microbial associations with emotion and social behaviour in humans, focussing on psychobiotic studies, microbe–depression correlations, early human development, autism, and issues of statistical power, replication, and causality. We analyse how the putative physiological mediators of the microbiome–sociality connection may be investigated, and discuss issues relating to the interpretation of results. We also suggest that other candidate molecules should be studied, insofar as they exert effects on social behaviour and are known to interact with the microbiome. Finally, we consider different models of the sequence of microbial effects on host physiological development, and how these may contribute to host social behaviour.

 
more » « less
NSF-PAR ID:
10453439
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Biological Reviews
Volume:
95
Issue:
5
ISSN:
1464-7931
Page Range / eLocation ID:
p. 1131-1166
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Research on animal microbiomes is increasingly aimed at determining the evolutionary and ecological factors that govern host–microbiome dynamics, which are invariably intertwined and potentially synergistic. We present three empirical studies related to this topic, each of which relies on the diversity of Malagasy lemurs (representing a total of 19 species) and the comparative approach applied across scales of analysis. In Study 1, we compare gut microbial membership across 14 species in the wild to test the relative importance of host phylogeny and feeding strategy in mediating microbiome structure. Whereas host phylogeny strongly predicted community composition, the same feeding strategies shared by distant relatives did not produce convergent microbial consortia, but rather shaped microbiomes in host lineage‐specific ways, particularly in folivores. In Study 2, we compare 14 species of wild and captive folivores, frugivores, and omnivores, to highlight the importance of captive populations for advancing gut microbiome research. We show that the perturbational effect of captivity is mediated by host feeding strategy and can be mitigated, in part, by modified animal management. In Study 3, we examine various scent‐gland microbiomes across three species in the wild or captivity and show them to vary by host species, sex, body site, and a proxy of social status. These rare data provide support for the bacterial fermentation hypothesis in olfactory signal production and implicate steroid hormones as mediators of microbial community structure. We conclude by discussing the role of scale in comparative microbial studies, the links between feeding strategy and host–microbiome coadaptation, the underappreciated benefits of captive populations for advancing conservation research, and the need to consider the entirety of an animal's microbiota. Ultimately, these studies will help move the field from exploratory to hypothesis‐driven research.

     
    more » « less
  2. Abstract

    Stress resilience is defined as the ability to rebound to a homeostatic state after exposure to a perturbation. Organisms modulate various physiological mediators to respond to unpredictable changes in their environment. The gut microbiome is a key example of a physiological mediator that coordinates a myriad of host functions including counteracting stressors. Here, we highlight the gut microbiome as a mediator of host stress resilience in the framework of the reactive scope model. The reactive scope model integrates physiological mediators with unpredictable environmental changes to predict how animals respond to stressors. We provide examples of how the gut microbiome responds to stressors within the four ranges of the reactive scope model (i.e., predictive homeostasis, reactive homeostasis, homeostatic overload, and homeostatic failure). We identify measurable metrics of the gut microbiome that could be used to infer the degree to which the host is experiencing chronic stress, including microbial diversity, flexibility, and gene richness. The goal of this perspective piece is to highlight the underutilized potential of measuring the gut microbiome as a mediator of stress resilience in wild animal hosts.

     
    more » « less
  3. Abstract

    Primates acquire gut microbiota from conspecifics through direct social contact and shared environmental exposures. Host behaviour is a prominent force in structuring gut microbial communities, yet the extent to which group or individual‐level forces shape the long‐term dynamics of gut microbiota is poorly understood. We investigated the effects of three aspects of host sociality (social groupings, dyadic interactions, and individual dispersal between groups) on gut microbiome composition and plasticity in 58 wild Verreaux's sifaka (Propithecus verreauxi) from six social groups. Over the course of three dry seasons in a 5‐year period, the six social groups maintained distinct gut microbial signatures, with the taxonomic composition of individual communities changing in tandem among coresiding group members. Samples collected from group members during each season were more similar than samples collected from single individuals across different years. In addition, new immigrants and individuals with less stable social ties exhibited elevated rates of microbiome turnover across seasons. Our results suggest that permanent social groupings shape the changing composition of commensal and mutualistic gut microbial communities and thus may be important drivers of health and resilience in wild primate populations.

     
    more » « less
  4. Abstract

    In recent times, interest has grown in understanding how microbiomes – the collection of microorganisms in a specific environment – influence the survivability or fitness of their plant and animal hosts. The profound diversity of bacterial and fungal species found in certain environments, such as soil, provides a large pool of potential microbial partners that can interact in ways that reveal patterns of associations linking host–microbiome traits developed over time. However, most microbiome sequence data are reported as a community fingerprint, without analysis of interaction networks across microbial taxa through time.

    To address this knowledge gap, more robust tools are needed to account for microbiome dynamics that could signal a beneficial change to a plant or animal host. In this paper, we discuss applying mathematical tools, such as dynamic network modelling, which involves the use of longitudinal data to study system dynamics and microbiomes that identify potential alterations in microbial communities over time in response to an environmental change. In addition, we discuss the potential challenges and pitfalls of these methodologies, such as handling large amounts of sequencing data and accounting for random processes that influence community dynamics, as well as potential ways to address them.

    Ultimately, we argue that components of microbial community interactions can be characterized through mathematical models to reveal insights into complex dynamics associated with a plant or animal host trait. The inclusion of interaction networks in microbiome studies could provide insights into the behaviour of complex communities in tandem with host trait modification and evolution.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  5. Abstract

    Skin is the largest mammalian organ and the first defensive barrier against the external environment. The skin and fur of mammals can host a wide variety of ectoparasites, many of which are phylogenetically diverse, specialized, and specifically adapted to their hosts. Among hematophagous dipteran parasites, volatile organic compounds (VOCs) are known to serve as important attractants, leading parasites to compatible sources of blood meals. VOCs have been hypothesized to be mediated by host‐associated bacteria, which may thereby indirectly influence parasitism. Host‐associated bacteria may also influence parasitism directly, as has been observed in interactions between animal gut microbiota and malarial parasites. Hypotheses relating bacterial symbionts and eukaryotic parasitism have rarely been tested among humans and domestic animals, and to our knowledge have not been tested in wild vertebrates. In this study, we used Afrotropical bats, hematophagous ectoparasitic bat flies, and haemosporidian (malarial) parasites vectored by bat flies as a model to test the hypothesis that the vertebrate host microbiome is linked to parasitism in a wild system. We identified significant correlations between bacterial community composition of the skin and dipteran ectoparasite prevalence across four major bat lineages, as well as striking differences in skin microbial network characteristics between ectoparasitized and nonectoparasitized bats. We also identified links between the oral microbiome and presence of malarial parasites among miniopterid bats. Our results support the hypothesis that microbial symbionts may serve as indirect mediators of parasitism among eukaryotic hosts and parasites.

     
    more » « less